

PRERNA EDUCATION

https://prernaeducation.co.in

011-41659551 || 9312712114

16 . 17.	Let S_n = $\sum_{r=0}^{n-1} \cos^{-1} \left(\frac{n^2 + r^2 + r}{\sqrt{n^4 + r^4 + 2r^3 + 2n^2r^2 + 2n^2r + n^2 + r^2}} \right)$. Then the value of S_{100} , is (A) $\frac{\pi}{12}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$ Let $f: R \rightarrow \left[0, \frac{\pi}{2} \right]$ be defined by $f(x) = \tan^{-1}(3x^2 + 6x + a)$. If $f(x)$ is an onto function then the value of a is (A) 1 (B) 2 (C) 3 (D) 4	18. 19. 20.	Let $y = f(x)$ be a function satisfying the equation $tan^{-1}y = tan^{-1}x + C$ where $y = 1$ when $x = 0$. Range of the function $f(x)$, is (A) $R - \{-1\}$ (B) $(-1, \infty)$ (C) $[1, \infty)$ (D) $(-\infty, 1]$ Number of real solutions satisfying the equation $x \cos^{-1}x + 2 = x + 2 \cos^{-1} x$, is (A) 0 (B) 1 (C) 2 (D) 3 For any real number $x \ge 1$ the expression $\sec^{2}(tan^{-1}x) - tan^{2}(\sec^{-1}x)$ is equal to (A) 1 (B) 2 (C) $2x^{2}$ (D) $2\sqrt{2}$
	(SECT	ION-B)	
21.	Let $\alpha = 2 \tan^{-1} \frac{1}{2} + \sin^{-1} \frac{3}{5}$ and $\beta = \sin^{-1} \frac{12}{13} + \frac{12}{13}$	26.	Consider, $\alpha = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, $x \in [-1, 1]$, $\beta = (3\cos x - 4\sin x)$
	$\cos^{-1}\frac{4}{5} + \cot^{-1}\frac{16}{63}$ be such that $2\sin \alpha$ and $\cos \beta$ are roots of the equation $x^2 - px + q = 0$, then find $(p - q)$.		$\cos^{-1}\left(\frac{3\cos y - 4\sin y}{10}\right), y \in [0, 2\pi] \text{ and } \gamma = 2$ $\tan^{-1}(z^2 - 4z + 5), z \in \mathbb{R}. \text{ If } \alpha, \beta \text{ and } \gamma \text{ are interior angles of a triangle such that } (\beta + \gamma) \text{ is }$
22.	Two functions f(x) and g(x) are defined as f(x) = $\log_3 \left \frac{x-2}{x^2-10x+24} \right $ and g(x) = sin ⁻¹ $\left(\frac{2[x]-3}{15} \right)$ then find the number of even integers for which (f(x)+g(x)) is defined. [Note : [k] denotes greatest integer less than or equal to k.]	27.	minimum then x + tan y + z = $\frac{a - \sqrt{b}}{c}$ where, a, b, c \in N. Find the least value of (a + b + c). Let f be a function defined by f(x) = tan ⁻¹ (x ² + kx + 9 - x). If range of f(x) lies in the interval $\left(0, \frac{\pi}{2}\right)$ for all values of x \in R, then find the maximum integral value of k.
23.	Find the number of values of x satisfying simultaneously $\sin^{-1} x = 2 \tan^{-1} x$ and $\tan^{-1} \sqrt{x(x-1)} + \csc^{-1} \sqrt{1+x-x^2} = \frac{\pi}{2}$.	28.	If $x = \alpha$ satisfies the equation $\frac{\sin^{-1} x^2 + \cos^{-1} x}{\cos^{-1} x^2 + \sin^{-1} x} = -3$, then find the value of $(\alpha^2 + 2\alpha + 3)$.
24. 25.	Find the number of solutions of equation $\sin^{-1}(4\sin^2\theta + \sin^2\theta) + \cos^{-1}(-1 + 6\sin^2\theta) = \frac{\pi}{2}$, in $\theta \in [0, 5\pi]$. Consider, $f(x) = x - 1 + 2x - \pi + x - 3 $	29. 30.	Find the number of points $x \in \left[\frac{-\pi}{2}, \frac{3\pi}{2}\right]$ satisfying the equation $1 + \sin^{-1}(\sin x) = \frac{\pi}{3}$. For any real number x, let $\cot^{-1} x$ denote the unique real number θ in $(0, \pi)$ such that $\cot \theta$ = x.
	and $g(x) = \sin^{-1}x + \tan^{-1}x$. The value of x for which $f(g(x))$ is minimum is $\sqrt{k \sin \frac{\pi}{\lambda}}$ where k and $\lambda \in N$ then find the value of $(k + \lambda)$.		If $\lim_{n\to\infty}\sum_{k=1}^{n} \cot^{-1}(1+k+k^2) = \cot^{-1}(\alpha) + \cot^{-1}(\beta)$, where α , β are prime numbers, then find (α + β).

PG #2