JEE MAIN ANSWER KEY & SOLUTIONS

SUBJE CLASS CHAPT	SUBJECT :- PHYSICS CLASS :- 12 th CHAPTER :- ELECTROSTATICS									PAPER CODE :- CWT-1					
ANSWER KEY															
1. 8. 15. 22. 29.	(D) (A) (B) 10 1	2. 9. 16. 23. 30.	(A) (C) (A) 0 0	3. 10. 17. 24.	(D) (C) (A) 8	4. 11. 18. 25.	(D) (A) (B) 25	5. 12. 19. 26.	(C) (D) (A) 20	6. 13. 20. 27.	(C) (C) (A) 4	7. 14. 21. 28.	(B) (C) 20 7		
						SOLU	TIONS								
1. Sol.	(D) By M.E. conservation between initial & final point : $U_i + K_i = U_f + K_f$ \therefore Answer is (D)							(D) E = Fi = 8 × ∴	(D) E = Field near sphere = $\frac{V}{R} = \frac{8000}{1 \times 10^{-2}}$ = 8 × 10 ⁵ V/m · \therefore Energy density= $\frac{1}{2} \varepsilon_0 E^2 = \frac{4\pi \varepsilon_0}{8\pi}$						
2.	(A)							$r_{2} = \frac{8 \times 8 \times 10^{10}}{80} = \frac{80}{2} = 2.00 \text{ M}^{-3}$							
Sol.	$\therefore E = \frac{F}{q} \qquad \therefore E = \frac{2000}{5} = 400 \text{ N/C}$ Potential difference, $\Delta V = E. \text{ d} = 400 \times \frac{2}{100} = 8V.$							E ² =	$E^{2} = \frac{1}{8\pi \times 9 \times 10^{9}} = \frac{1}{9\pi} = 2.83 \text{ J/m}^{3}.$ (C) Since P & Q are axial & equatorial points, so electric fields are parallel to axis at both points						
3.	(D)	3	1312 309	q			Sol.	(0) 	Axis $\begin{array}{c} & & & \\ \bigcirc & & & \\ -q & & p \end{array} \xrightarrow{f} & \\ \hline & & \\ Q & & \\ \end{array}$ At a point 'P' on axis of dipole electric field E =						
Sol.	$q \xrightarrow{30^{\circ}}{a} \xrightarrow{-q}$							$\frac{2kp}{r^3}$ and el	and elect	ric potent Id along	tial V = r dipole oi	tp .2 both n the axis	onzero 3.		
	⇒		-qa 	B_q 3a a	A Fq		7. Sol. 8.	(B) Densi no. of electr (A)	ty of ele lines pe ic field a	ectric fie r unit an it that po	eld lines ea show pint.	at a po s magnit	int i.e. tude of		
	+q a F (i) E.P.E. of charge +q at point A can be given as : $E_{A} = \frac{-2kq^{2}}{a} + \frac{-2kq^{2}}{\sqrt{3}a} - \frac{kq^{2}}{2a} \& E.P.E. \text{ of system}$ $\Rightarrow F = \frac{E_{A} + E_{B} + E_{C} + E_{D} + E_{E} + E_{F}}{2a}$							ℓ Using Gauss's law for Gaussian surface							
	→ ∴	_s where E _s = ∶	e E _A = E 3 E	2 _в = Е _с =	= E _D = E _E	₌ = E _F		showr	n in figur	e.∮Ĕ.($\overrightarrow{dA} = \frac{q_{in}}{\varepsilon_0}$; Ε. 2πr	$\ell = \frac{\lambda \ell}{\varepsilon_0}$		
	÷	е Е _s =	$6\left(-\frac{kq^2}{a}\right)$	+ 6	$\frac{kq^2}{a\sqrt{3}}$ +	3		∴ For ci	$E = \frac{1}{2}$ rcular m	<u>πε₀r</u> otion.					
		$\left(-\frac{kq}{2a}\right)$	$\left(\frac{a}{a}\right) = \frac{1}{2}$	$\frac{q^2}{\tau \in_0 a} \left[\frac{1}{\tau} \right]$	$\frac{\sqrt{3}}{a} - \frac{15}{8}$]		qE = ∴	$\frac{mv}{r} = \frac{1}{2}$ $V = \sqrt{\frac{1}{2}}$	$\frac{q\lambda}{\pi\epsilon_0 r}$ $\frac{q\lambda}{2\pi\epsilon_0 m}$					

15. (B)
Sol. Since, ne external electric field can enter into a conductor so force experienced by
$$Q = 0$$

16. (A)
Sol. $T = 2\pi \sqrt{\frac{\pi}{2}}$; where $g_{eff} = \frac{mq - qE}{m}$
 $= g - \frac{qE}{m}$: Time period increases.
17. (A)
Sol. P.D. = $\int \vec{E} \cdot \vec{dr}$ and E between spheres does not depend on charge on outer sphere.
18. (B)
Sol. In a conductor, potential is same everywhere \cdot . Potential at A = potential at centre $= \sqrt{a_{exc}} + \sqrt{a_{str}} + \sqrt{a_{str}} = \frac{kp C OS^2}{r^2}$
19. (A)
Sol. $\vec{F} = \frac{\sqrt{q}}{(rsc + q)^2} + 0$ $= \frac{kp C OS^2 \phi}{r^2}$
19. (A)
Sol. $\vec{F} = \frac{\sqrt{q}}{(rsc + q)^2} + r = F_{efg} = \frac{\sigma^2 \pi R^2}{2z_0}$
20. (A)
Sol. $\vec{F} = \frac{(\sigma^2}{2z_0)} \pi R^2$; $F = F_{efg} = \frac{\sigma^2 \pi R^2}{2z_0}$
21. (A)
Sol. $\vec{F} = \frac{r}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
Sol. $\vec{F} = r \cos \beta \rightarrow 4 = 0.2 E 2 \cos \beta 0^2$
Sol. $\vec{F} = \frac{r}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
21. (2)
Sol. $\vec{F} = \frac{F}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
22. 10
Sol. $\vec{F} = \frac{F}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
23. 0
Sol. $\vec{F} = \frac{F}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
24. $\vec{F} = \frac{1}{2} \frac{2kd\lambda}{R} \cos \phi$
Sol. $\vec{F} = \frac{r}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
25. $(\vec{F} = \frac{1}{2} - \frac{1}{2k}) + 10$
27. 4
Sol. $\vec{F} = \frac{r}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
28. $\vec{F} = \frac{1}{2k} \cos \phi$
Sol. $\vec{F} = \vec{F} = \frac{3000}{2\pi} = \frac{\pi}{q}$
29. $\vec{F} = \frac{1}{2k} \cos \phi$
Sol. $\vec{F} = \vec{F} = \frac{3000}{2\pi} = \frac{\pi}{q}$
20. (A)
Sol. $\vec{F} = \frac{F}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
21. $\vec{F} = \frac{F}{q} = \frac{3000}{2\pi} = \frac{\pi}{q}$
22. $\vec{f} = \frac{\pi}{q} \cos \phi$
Sol. $\vec{F} = \frac{\pi}{100} \times 1$
23. $\vec{f} = \frac{\pi}{100} \times 1$
24. $\vec{f} = \frac{\pi}{100} \times 1$
25. $\vec{f} = \frac{\pi}{100} \times 1$
26. $\vec{f} = \frac{\pi}{q} \cos \phi$
27. 4
Sol. $\vec{f} = \frac{\pi}{q} \cos \phi$
27. 4
28. $\vec{f} = \frac{\pi}{q} \cos \phi$
29. $\vec{f} = \frac{\pi}{q} \cos \phi$
20. $\vec{f} = \frac{\pi}{q} \cos \phi$
20. $\vec{f} = \frac{\pi}{q} \cos \phi$
20. $\vec{f} = \frac{\pi}{q} \cos \phi$
21. $\vec{f} = \frac{\pi}{q} \cos \phi$
22. $\vec{f} = \frac{\pi}{q} \cos \phi$
23. $\vec{f} = \frac{\pi}{q} \cos \phi$
24. $\vec{f} = \frac{\pi}{q} \cos \phi$
25. $\vec{f} = \frac{\pi}{q} \cos \phi$
26. $\vec{f} = \frac{\pi}{q} \cos \phi$
27. $\vec{f} = \frac{\pi}{q} \cos \phi$
28. $\vec{f} = \frac{\pi}{q} \cos \phi$
29. $\vec{f} = \frac{\pi}{q} \cos \phi$
20. $\vec{f} = \frac{\pi}$

28. 7
Sol.
$$\stackrel{-e}{\longleftarrow} \stackrel{r}{\longleftarrow} \stackrel{e}{\bigoplus} e$$

 $P = qd = ed = 1.6 \times 10^{-19} \times .20 = .32 \times 10^{-19}$
 $V = \frac{kP \cos \theta}{r^2} = \frac{kP \cos 0^{\circ}}{r^2} = \frac{kP \cos 0^{\circ}}{r^2}$
 $= \frac{(9 \times 10^9)(.32 \times 10^{-19})}{r^2} = \frac{2.88 \times 10^{-10}}{r^2}$
 $\therefore V_1 = \frac{2.88 \times 10^{-10}}{(1.4)^2} = 1.47 \times 10^{-10}$
 $\therefore 9 (V_2 - V_1) = K_1 - K_2$
 $V_2 = \frac{2.88 \times 10^{-10}}{(1)^2} = 2.88 \times 10^{-10}$
 $\Rightarrow -e (V_2 - V_1) = 0 - \frac{1}{2} mV^2$
 $\therefore (1.6 \times 10^{-19})(1.41 \times 10^{-10})$
 $= \frac{1}{2} \times (9.1 \times 10^{31})V^2$
 $\therefore V \approx 7 m/s.$
30.

29. 1
Sol.
$$\oint \vec{E} \cdot d\vec{A} = \frac{\int \rho dV}{\epsilon_0}$$

$$E \times 4\pi r^2 = \frac{k \int r^n \times 4\pi r^2 dr}{\epsilon_0}$$

$$= \frac{4\pi k}{\epsilon_0} \frac{r^{x+3}}{x+3}$$

$$\mathsf{E} = \frac{\mathsf{k}}{(\mathsf{n}+3)\in_0}(\mathsf{r}^{\mathsf{n}+1})$$
$$\mathsf{n}+\mathsf{1}=\mathsf{2}\Rightarrow\mathsf{n}=\mathsf{1}$$

0

Both point charges subtend equal solid angle at the given cross section, hence net flux is zero.