JEE MAIN ANSWER KEY & SOLUTIONS

9. (C) **Sol.** Induction takes place on outer surface of sphere producing non-uniform charge distribution & since external electric field can not enter the sphere, so interior remains charge free.

$$
E_p = \frac{q/2}{2A\epsilon_0} + \frac{q/2}{2A\epsilon_0} = \frac{q}{2A\epsilon_0} = 50V/m
$$

A

11. (A)

Sol.

R R 2

Let surface charge density on inner shell is σ_{1}

Due to inner sphere, field at A = $\frac{1}{4} \times \frac{1}{\epsilon_0} = \frac{1}{4 \epsilon_0}$ 1 0 1 4 ε_0 4 1 ϵ $\frac{\sigma_1}{\epsilon_0} = \frac{\sigma}{4\epsilon}$ $x \frac{\sigma_1}{s} = \frac{\sigma_1}{4s},$ and electrostatic pressure at point A.

$$
= \frac{\sigma^2}{2\varepsilon_0} + \frac{\sigma_1 \sigma}{4\varepsilon_0}
$$

Net force one hemisphere

$$
= \left(\frac{\sigma^2}{2\varepsilon_0} + \frac{\sigma_1 \sigma}{4\varepsilon_0}\right) \pi R^2 = 0
$$

\n
$$
\Rightarrow \qquad \sigma^2 + \frac{\sigma_1 \sigma}{2} = 0 \quad \text{or} \quad \sigma_1 = -2\sigma
$$

12. (D)

Sol. Force on Q due to E is QE. and not zero. Force on Q is zero due to E & electric field of induced outer charges on sphere. Charge density on inner surface is not uniform therefore net force on charge Q is not zero. Due to E, net force on shell is zero because net charge on shell is zero.

 \therefore Total electric field :

$$
E = \int \frac{K dq}{x^2}
$$

$$
E = \int \frac{K(density)(volume of the element)}{x^2}
$$

$$
E = \int_{r=\infty}^{r=x} \frac{K(\rho_0 r^2)(4\pi r^2 dr)}{x^2}
$$

$$
E = \frac{K\rho_0}{x^2} \left(\frac{x^5}{5}\right) = \frac{x\rho_0}{5} (x^3) \qquad \therefore \quad (E \propto x^3)
$$

15. (B)
\n16. (A)
\n16. (A)
\n16. (A)
\n16. (A)
\n17. (A)
\n18. (B)
\n19. (C)
\n10. The 2π_g =
$$
\frac{1}{2}
$$
sin² + $\frac{1}{2}$ sin²

e and a is racdius of single drop. $drop = nq$. big drop is R. $\pi R^3 = n \cdot \frac{4}{3} \pi a^3$ \Rightarrow R = an^{1/3}. $3^{3} = n \cdot \frac{4}{3} \pi a^{3}$ R^3 = n. 5 2 $3k^2n^2$ $\frac{3}{2} \frac{k (qn)^2}{5} = \frac{3}{2} \frac{k.q^2n^2}{1/2} =$ k(qn) 3 k.q[∠]n P.E. of big drop = $\frac{9}{5}$ $\frac{6(41)}{8}$ = $\frac{3}{5}$ $\frac{6(41)}{1/3}$ = Un³ Un 3/1 5 R 5 an $= 8$ kQ^2 $= 4 kQ^2$ 1 kQ^2 kQ^2 \times 4 kQ² = $\frac{6}{0.2}$ $-\frac{1}{x}$ $E = 3.2 \times 10^{-17}$ $\frac{\text{cm}}{\text{m}}$ 11111111 $E = \frac{5.2}{16} \times 100 = 200 \text{ N/C}$

$$
\therefore
$$
 Potential difference = (200) (0.1) = 20 volts.

4
\n
$$
d\lambda = \sigma R d\phi
$$
\n
$$
\int_{-\pi/2}^{\pi/2} \frac{2k d\lambda}{R} \cos \phi
$$
\n2k σ $\int_{-\pi/2}^{\pi/2} \cos \theta d\phi = 2k\sigma \left[\sin \phi \Big|_{-\pi/2}^{\pi/2}\right]$ \n
$$
= \frac{\sigma}{\pi \epsilon_0} = \frac{4\pi \epsilon_0}{R \epsilon_0} = 4
$$

29. 1
\n**Sol.**
$$
\oint \vec{E} \cdot d\vec{A} = \frac{\int \rho dV}{\epsilon_0}
$$
\n
$$
E \times 4\pi r^2 = \frac{k \int r^n \times 4\pi r^2 dr}{\epsilon_0}
$$
\n
$$
= \frac{4\pi k}{\epsilon_0} \frac{r^{x+3}}{x+3}
$$
\n
$$
E = \frac{k}{(n+3)\epsilon_0} (r^{n+1})
$$
\n
$$
n+1 = 2 \Rightarrow n = 1
$$

30. 0

Sol. Both point charges subtend equal solid angle at the given cross section, hence net flux is zero.