JEE MAIN : CHAPTER WISE TEST PAPER-3						
SUBJECT :- CHEMISTRY			DATE			
CHAF	IER CHEIMICAL RINE IICS (SEO	TION-A)	SECTION			
1.	Units of rate constant of first and zero order reactions in terms of molarity M unit are respectively (A) sec ⁻¹ , M sec ⁻¹ (B) sec ⁻¹ , M (C) M.sec ⁻¹ , sec ⁻¹ (D) M, sec ⁻¹		$\frac{-d[NO_2^-]}{dt} = k_1[NO_2^-][H^+]^2[I$ $\frac{d[H^+]}{dt} = -k_2[NO_2^-][H^+]^2[I^-]$ $\frac{d[NO]}{dt} = k_3[NO_2^-][H^+]^2[I^-]$	-]		
2.	The differential rate law for the reaction $H_2 + I_2 \rightarrow 2HI$ is :		The relationship between (A) $k_1 = k_2 = k_3$ ($(B) k_1 = 2k_2 = k_3$		
	$(A) - \frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$		(C) $k_1 = \frac{k_2}{2} = k_3$ ((D) $2k_1 = k_2 = 3k_3$		
	(B) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2}\frac{d[HI]}{dt}$ (C) $\frac{1}{2}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$ (D) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} = +\frac{d[HI]}{dt}$	7.	A reaction was found to b respect to the concer monoxide. If the concer monoxide is doubled, with the same, the rate of reac (A) remain unchanged (B) tripled	be second order with ntration of carbon entration of carbon everything else kept ction will be		
3.	The rate equation for the reaction $2A + B \longrightarrow C$ is found to be : rate = k[A] [B]. The correct statement in relation to this reaction is that the (A) unit of k must be sec ⁻¹ (B) $t_{1/2}$ is a constant (C) rate of formation of C is twice the rate of disappearance of A (D) value of k is independent of initial concentrations of A and B.	8.	(C) increased by a factor (D) doubled A substance undergoes reaction as shown A $\xrightarrow{K_1}$ B $\xrightarrow{K_2}$ C constant $K_1 = \frac{\ln 2}{2000}$ sec $K_3 = 20 \ln 2 \sec^{-1}$. What	a series of chemical $\xrightarrow{K_3}$ D with rate c^{-1} , $K_2 = \frac{\ln 2}{10} \sec^{-1}$, t will be the value of		
4.	A reaction involving two different reactants can never be : (A) unimolecular reaction (B) first order reaction (C) second order reaction (D) bimolecular reaction		$\frac{[A]}{[C]}$ once steady state is {[] represents concent (A) 40000 ((C) 200 (obtained. ration} (B) 20000 (D) 400		
5.	Consider the following reaction $2A(g) \rightarrow 3B(g)$ + C(g). Starting with pure A having pressure 2atm initially, the total pressure is exactly doubled in 2hrs. The possible order of reaction is (A) zero (B) first (C) second (D) third	9.	A first order reaction is 5 minutes at 27°C and in energy of activation of the (A) 43.85 kJ/mol ((C) 11.97 kJ/mol (The half life of the unim reaction A(g) \longrightarrow B(g) + C	50% completed in 20 5 min at 47°C. The e reaction is (B) 55.14 kJ/mol (D) 6.65 kJ/mol polecular elementary C(g) is 6.93 min. How		
6.	For the reaction : $2NO_2^- + 4H^+ + 2I^- \rightarrow I_2^- + 2NC^-$ + $2H_2O^-$ The rate of reaction can be written as :		long will it take for the cor reduced to 10 % of the ini (A) 10.053 min ((C) 46 min (ncentration of A to be tial value? (B) 4.6 min (D) 23.03 min		

- **12.** For reaction $A \longrightarrow B$, the rate constant $k_1 = A_1$

 $\begin{array}{l} e^{-Ea_{1}} / RT \text{ and for the reaction P} \longrightarrow Q, \text{ the rate} \\ \text{constant } k_{2} = A_{2} e^{-Ea_{2}} / RT \cdot \text{ If } A_{1} = 10^{8}; A_{2} = \\ 10^{10} \text{ and } Ea_{1} = 600 \text{ cal/mol}, Ea_{2} = 1200 \text{ cal/} \\ \text{mol}, \text{ then the temperature at which } k_{1} = k_{2} \text{ is } (R \\ = 2 \text{ cal/K-mol}) \\ \text{(A) } 600 \text{ K} \\ \text{(C) } \frac{300}{4.606} \text{ K} \\ \text{(D) } \frac{4.606}{600} \text{ K} \end{array}$

13. For the first order decomposition of $SO_2Cl_2(g)$, $[SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)]$, a graph of log $(a_0 - x)$ vs t is shown in figure. What is the rate constant (sec⁻¹)?

14. For the reaction

 $CH_3COCH_3 + Br_2 \xrightarrow{H^+} CH_3COCH_2Br + H^+ + Br^-$

the following data was collected [Acetone] [Br₂] [H⁺] Rate of reaction (Ms⁻¹) 0.15 0.025 0.025 6×10^{-4} 0.15 0.050 0.025 6×10^{-4}

0.15 0.025 0.025 12×10^{-4} 0.20 0.025 0.025 8.0×10^{-4} The order of the reaction w.r.t. CH₃COCH₃ and Br₂ respectively are : (A) 0,1 (B) 1,0 (C) 1,1 (D) 1,2

15. Consider the reaction A \longrightarrow B, graph between half life (t_{1/2}) and initial concentration (a) of the reactant is

300 minutes, then time taken to complete 25% reaction if we start with same initial concentration at same temperature is (A) 33.33 min. (B) 50 min. (C) 66.66 min. (D) 100 min.

18. Decomposition of reaction $3A(g) \rightarrow 2B(g) + 2C(s)$ follows **first order** kinetics. Starting with **pure A (at 6 atm)**, the pressure developed after 20 minute and after a long time are **5.05 atm** and **4.05 atm**, respectively. Identify the **correct** statement.

(A) Time for 75% completion is slightly more than 40 minute.

(B) Time for 87.5% completion is slightly less than 60 minute.

(C) Time for 93.75% completion is exactly 80 minute.

(D) Time for 90% completion is more than 80 minute.

PG #2

19. 20.	The decomposition of a drug in human was found to be a first order process. The activation energy for the decomposition is $(3100 \text{R} \times ln2)$ and pre-exponential factor A = 4096 hr ⁻¹ . How long will it take the concentration of the drug in the blood to fall to half of its initial value at 310K? Given : ln2 = 0.7 (A) 10.5 hr (B) 0.175 min (C) 10.5 min (D) 0.175 sec Statement-1 : For the reaction : 2A + B \longrightarrow C, the rate of disappearance of A is twice the		Statement-2 : For the reaction : $2A + B \longrightarrow$ C, Rate of reaction is $\frac{d[C]}{dt}$ (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.
	rate of disappearance of B		
	(0-0-		
	(SECT	ION-B)	
21.	The following mechanism has been proposed for the reaction of NO with Br_2 to form NOBr. NO (g) + $Br_2(g) \longrightarrow NOBr_2(g)$; NOBr ₂ (g) + NO (g) \longrightarrow 2NOBr (g) (slow step) If the second step is the rate determining step, the order of the reaction with respect to NO(g) is	26.	A reaction takes place in 3 steps, the rate constant are K_1 , K_2 and K_3 and energies of activation are 40, 30 and 20 kJ respectively. If overall rate constant $K = \frac{K_1K_3}{K_2}$, then overall energy of activation is :
22.	For the lst order reaction : $A(g) \rightarrow B(g) + C(g) + D(s)$ taking place at constant pressure and temperature condition. Initially volume of container containing only A was found to be 10L and after 0.693 hrs it was 17.5 L. The rate constant for the reaction is (hr ⁻¹):	27.	Consider the elementary reaction : $k_{1} \rightarrow B$ A A A A A A A A A A A A A A A A A A A
23.	Consider the reaction A_{k_2} . The rate constant for two parallel reactions were found to be 10^{-2} dm ³ mol ⁻¹ s ⁻¹ (k ₁) and 4 × 10^{-2} dm ³ mol ⁻¹ s ⁻¹ (k ₂). If the corresponding energies of activation of the parallel reactions are 80 and 100 kJ respectively. What is the apparent (net)	28.	40° and – 80° and initial concentration of A is 1M, then time at which reaction mixture will be optically inactive is : The temperature coefficient (μ) of a reaction at 300 K is "e". Assuming temperature coefficient
	overall energy of activation of given reaction.		to be dependent on temperature what would be
24.	If 0.01% of a substance undergoing decomposition is consumed in 1 millisecond when the concentration is 0.02 M and in 0.25 millisecond when the concentration is 0.04 M,	29.	the value of $\log_{e} \left(\frac{K_{620}}{K_{300}} \right)$? The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were
25.	what is the order of the reaction?		256 g, the mass of it remaining undecayed after 18 hours would be
	$A \longrightarrow Product$		
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	30.	The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about :

Order of reaction is