CLASS :- 11th

SUBJECT :- PHYSICS

(D)

=

=

1.

JEE MAIN ANSWER KEY & SOLUTIONS

PAPER CODE :- CWT-14

CHAPTER :- MECHENICAL WAVE													
						ANSW	/ER KEY						
1.	(D)	2.	(D)	3.	(C)	4.	(D)	5.	(B)	6.	(C)	7.	(B)
8.	(C)	9.	(A)	10.	(D)	11.	(C)	12.	(D)	13.	(A)	14.	(C)
15.	(C)	16.	(A)	17.	(B)	18.	(A)	19.	(B)	20.	(C)	21.	7
22.	15	23.	98	24.	10	25.	600	26.	1	27.	1000	28.	214
29.	12	30.	125										

	90		N	
OOLOHIONG	30			•

Ans.

- **Sol.** $\frac{P}{4\pi r^2} = I$ for an isotropic point sound source. **Sol.** $\Rightarrow P = I.4\pi r^2$
 - $(0.008 \text{ w/m}^2) (4.\pi \cdot 10^2)$
 - 10 watt.
- **2.** (D)
- **Sol.** Energy per unit area associated with progressive sound wave $I = 2\pi^2 a^2 n^2$ sV if we increase amplitude to $\sqrt{2}$ times or frequency to $\sqrt{2}$ times I will be doubled. So % increment 41% of either amplitude or

frequency

- **3.** (C)
- **Sol.** The excess pressure inside the soap bubble in inversely proportional to radius of soap bubble i.e. $P \propto 1/r$, r being the radius of bubble. It follows that pressure inside a smaller bubble is greater than that inside a bigger bubble. Thus, if these two bubbles are connected by a tube, air will flow from smaller bubble to bigger bubble and the bigger bubble grows at the expense of the smaller one.
- **4.** (D)
- **Sol.** Path difference is λ between B and G.
- **5.** (B)

Sol. Distance between boat
$$=\frac{\lambda}{2}=10$$
 m

⇒
$$\lambda = 20m$$

time penod T = 4 sec.
∴ V = λ / T = 20 m / 4sec.
= 5m/s.

6. (C)

7. (B)

...

Second overtone of open pipe = $\frac{3V}{2\ell_1}$

second overtone of closed pipe = $\frac{5V}{4\ell_{o}}$

Since, these frequency are same

$$\frac{3V}{2\ell_1} = \frac{5V}{4\ell_2}$$

$$\Rightarrow \qquad \frac{\ell_1}{\ell_2} = \frac{4 \times 3}{2 \times 5} = \frac{6}{5}$$

Now, the ratio of fundamental frequencies :

$$\frac{f_1}{f_2} = \frac{\frac{V}{2\ell_1}}{\frac{V}{4\ell_2}} \implies \frac{2\ell_2}{\ell_1}$$
$$= 10:6=5:3$$
 Ans.

8.

Sol. For closed organ pipe
$$f = \frac{(2n+1)v}{4}$$

$$(n = 0, 1, 2,)$$

$$\frac{(2n + 1)v}{4\ell} < 1250$$

$$(2n + 1) < 1250 \times \frac{4 \times 0.85}{340}$$

$$85 \text{ cm}$$

$$(2n + 1) < 12.5$$

$$2n < 11.50$$

$$n < 5.25$$
So $n = 0, 1, 2, 3,5$
So we have 6 possibileties

9. (A)
13. (A)
Sol.
$$n = \frac{V}{\lambda} = \frac{21}{15 \times 10^{-3}} = \frac{210}{15}$$

 $V_{max} = A \omega = 5 \times 10^{-3} \times \frac{210}{15} \times 2\pi$
 $= 70 \times 2 \times \frac{22}{7} \times 10^{-3} = .44m/sec.$
10. (D)
Sol. The standard wave equation is
 $y = a \sin(100t - \frac{x}{10})$
Compare t with the standard wave equation we obtain
 $\omega = 100, k = \frac{1}{10}$
Velocity of the wave,
 $v = \frac{\omega}{k} - \frac{100}{10} = 100 \times 10 = 1000 \text{ m/s}$
11. (C)
Sol. Velocity of sound in air (V) = $\sqrt{\frac{110}{V}}$
M
 $= \sqrt{\frac{100}{10}} = 100 \times 10 = 1000 \text{ m/s}$
14. (C)
Sol. Velocity of sound in air (V) = $\sqrt{\frac{110}{V}}$
 $V = \sqrt{\frac{100}{1}} = 100 \times 10 = 1000 \text{ m/s}$
14. (C)
Sol. Velocity of sound in air (V) = $\sqrt{\frac{110}{V}}$
 $V = \sqrt{\frac{110}{10}} = 100 \times 10 = 1000 \text{ m/s}$
15. (C)
Sol. Velocity of transverse wave in a string :
 $V = \sqrt{\frac{11}{\mu}} = \sqrt{2} \alpha T$
Hence (C) is a correct graph.
12. (D)
Sol. Find the parameters and put in the general wave
equation.
Here, A = 2 cm
direction = +ve x direction
 $v = 128 \text{ ms}^{-1}$
and $5 \times z = 4$
Now, $k = \frac{2\pi}{\lambda} = \frac{2\pi \times 5}{4} = 7.85$
and $v = \frac{\omega}{k} = 128 \text{ ms}^{-1}$
 $v = 2in (7.68 \times -1005 \text{ f})$
 $v = 23in (7.6$

; their is no phase difference of $\boldsymbol{\pi}$

17. (B) 19. (B) Sol. L – x Fundamental frequency of wire $(f_{wire}) = \frac{V}{2\ell}$ Sol. (A) For the pulse : $f = \frac{v}{4\ell}, \frac{3v}{4\ell}, \frac{5v}{4\ell}$ $V = \sqrt{\frac{\mu xg}{\mu}} = \sqrt{xg} = \frac{dx}{dt}$ cannot match with f_{wire} $\frac{dx}{dt} = \sqrt{xg} \Rightarrow \int_{-\infty}^{x} \frac{dx}{\sqrt{x}} = \sqrt{g} \int_{-\infty}^{t} dt$ $f = \frac{v}{2(2\ell)} , \frac{2v}{2(2\ell)} ,$ (B) Зv its second harmonic $\frac{2v}{2(2\ell)}$ matches $t = 2\sqrt{\frac{x}{\alpha}}$ with f for the particle $L - x = \frac{1}{2} gt^2$ (C) _____, $f = \frac{v}{2(\ell/2)}, \frac{2v}{2(\ell/2)}$ $t = \sqrt{\frac{2(L-x)}{\alpha}}$ -(2) cannot match with f $f = \frac{v}{4(\ell/2)}, \quad \frac{3v}{4(\ell/2)} \dots$ (D) $1 = 2 \implies \therefore x = \frac{L}{3}$ from the bottom cannot match with 18. 20. (C) (A) Sol. There are 5 complete loops. Sol. For first resonance with 400 Hz tuning fork $\ell_{\rm eq} = \frac{V}{4f_0} = \frac{V}{4(400)} = (19 + 1) = 20 \,\rm cm$ If we use 1600 Hz tuning fork $\frac{V}{4f_0} = \frac{V}{4 \times (1600)} = \frac{20}{4} = 5 \text{ cm}$ Total number of nodes = 6 (B) $\omega = 628 \text{ sec}^{-1}$ $k = 62.8 \text{ m}^{-1} = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{1}{10}$ for Resonance $\ell_{eq} = \frac{V}{4f_0}, \frac{3V}{4f_0}, \frac{5V}{4f_0}, \frac{7V}{4f_0}, \dots$ $v_w = \frac{\omega}{k} = \frac{628}{62.8} = 10 \text{ ms}^{-1} \text{ L} = \frac{5\lambda}{2} = 0.25$ (C) 2A = 0.01 = maximum amplitude of antinode (D) f = $\frac{v}{2\ell} = \frac{10}{2 \times 0.25} = 20$ Hz. 20 cm 21. Sol. The number of beats will be the difference of frequencies of the two strings. Frequency of first string $f_1 = \frac{1}{2\ell_A} \sqrt{\frac{T}{m}}$ $\frac{1}{2 \times 51.6 \times 10^{-2}} \sqrt{\frac{20}{10^{-3}}} = 137.03 \text{ Hz}$ $1 \text{ cm} + \ell = 5 \text{ cm}$, 15 cm, 25 cm, 35 cm, 45 cmcm Similarly, frequency of second string ℓ = 4 cm , 14 cm , 24 cm , 34 cm , 44 cm $\frac{1}{2 \times 49} \sqrt{\frac{20}{10^{-3}}} = 144.01$ water level should be further lowered by 24 - 19 = 5 cmNumber of beats = $f_2 - f_1 = 144 - 137 = 7$ beats 34 - 19 = 15 cm

22. 15
Sol.
$$f = f \frac{C}{C - V}$$

 $V \rightarrow V$
 $V \rightarrow$

L = 12 cm

—(1)

-(2)