JEE MAIN : CHAPTER WISE TEST PAPER-14								
SUBJECT :- PHYSICS				DATE				
CLASS :- 11 th				NAME				
CHAP	FER :- MECHENICA	LWAVE			SECTION			
			(SECT	ION-A)				
1.	The sound intensity of 10 m from an iso The power of the s (A) 2.5 watt (C) 8 watt	r is 0.008 W/m² a tropic point sour ource is : (B) 0.8 wa (D) 10 wa	at a distance ce of sound. att tt	7.	The secon closed pipe given temp ratio of fu fundament (A) 3: 5	d overtone c e B have the perature. Bot ndamental al frequency (B) 5: 3	of an open p same frequ h pipes con frequency of B is: (C) 5: 6	ipe A and a uencies at a tain air. The of A to the (D) 6: 5
2.	The energy per uprogressive sound (A) the amplitude of (B) the amplitude of 50% (C) the amplitude of 41%	nit area associa wave will be dou of the wave is do of the wave is in of the wave is de	ated with a ubled if : ubled ncreased by ecreased by	8.	A pipe of le Find the nu of air colun below 1250 340 m/s. (A) 12	ength 85 cm Imber of pose nn in the pipe 0 Hz. The ve (B) 8	is closed fro sible natural e whose free elocity of so (C) 6	om one end. oscillations quencies lie und in air is (D) 4
3.	 (D) the frequency 41% If two soap bubb connected by a tub (A) air flows from the bubble till the sizes (B) air flows from the bubble till	of the wave is in ples of difference: e bigger bubble to s become equal bigger bubble to	ncreased by nt radii are o the smaller the smaller	9.	A piece of cork is floating on water in a small tank. The cork oscillates up and down vertically when small ripples pass over the surface of water. The velocity of the ripples being 0.21 ms ⁻¹ , wave length 15 mm and amplitude 5 mm, the maximum velocity of the piece of cork is			
4.	C bubble till the sizes (C) air flows from th (D) there is no flow The following figure a medium. Which p	e smaller bubble of air e depicts a wave pair of particles a	ed to the bigger travelling in tre in phase.	10.	(A) 0.44 m (C) 2.4 ms The equat $\left(100t - \frac{x}{10}\right)$ in second; (A) 0.1 m/s	s^{-1} tion of a way), where x a then velocity	(B) 0.24 m (D) 4.4 ms ve is given l and y are in y of wave is (B) 10 m/s	hs^{-1} s^{-1} by y = a sin metre and t : s
5.	(A) A and D (C) C and E Two small boats an pops up and down due to wave motion one boat is at its h is at its lowest po within a single cycle	(B) B and (D) B and e 10m apart on a with a period of on the surface of ighest point, the int. Both boats e of the waves. T	F G a lake. Each 4.0 seconds water. When e other boat are always the speed of	11.	(C) 100 m/ Which of th (A) (Parabole (C) (Parabole (Parabole)	S ne following sound in air) (T=constant) a) (Pressure) transeverse tring) a)	(D) 1000 r is/ are corre (B) (Fundame (D)	m/s ct. of sound in air) ² (Temperature °C) ntal freq. n pipe)
6.	the waves is : (A) 2.5 m/s (C) 14 m/s Three waves of amplitudes 10 μ m given point with a s of $\pi/2$. The amplitu μ m in given by (A) 7 (B) 6	(B) 5.0 m (D) 40 m/s equal frequer , 4 μm and 7 μm successive phas ude of the result (C) 5	n/s s ncy having n arrive at a e difference ting wave is	12.	A wave in The wave is with a spee complete v The equati (A) $y = (0.0)$ (B) $y = (0.0)$ (C) $y = (0.0)$ (D) $y = (0.0)$	(Tension) a string has travels in the ed of 128 ms waves fit in 4 on describing (2)m sin (7.8 (2)m sin (15 (2)m sin (7.8 (2)m sin (7.8	an amplitu e +ve directi s^{-1} and it is r 4m length o g the wave is 35 x + 100 5 .7 x - 2010t .7 x + 2010t 35 x - 100 5	(Length of organ pipe) de of 2 cm. on of x axis noted that 5 f the string. s t))

PG #1

13. A massless rod BD is suspended by two identical massless strings AB and CD of equal lengths. A block of mass 'm' is suspended point P such that BP is equal to 'x', if the fundamental frequency of the left wire is twice the fundamental frequency of right wire, then the value of x is :

14. When two progressive waves $y_1 = 4 \sin (2x - 6t)$ and $y_2 = 3 \sin \left(2x - 6t - \frac{\pi}{2}\right)$ are superimposed, the amplitude of the resultant wave is :

(A) 3	(B) 4
(C) 5	(D) None of these

15. The equation of a plane progressive wave is $y = 0.02 \sin 8\pi \left[t - \frac{x}{20} \right]$. When it is reflected at a rarer medium (medium with higher velocity) at x = 0, its amplitude becomes 75% of its previous value. The equation of the reflected wave is

(A) y = 0.02 sin
$$8\pi \left[t - \frac{x}{20} \right]$$

(B) y = 0.02 sin $8\pi \left[t + \frac{x}{20} \right]$
(C) y = +0.015 sin $8\pi \left[t + \frac{x}{20} \right]$
(D) y = -0.015 sin $8\pi \left[t + \frac{x}{20} \right]$

16. A non–uniform rope of length ℓ hangs from a ceiling. Mass per unit length of rope (μ) changes as $\mu = \mu_0 e^y$, where y is the distance along the string from its lowest point. Then graph between square of velocity of wave and y will be best represented as :

17. Figure shows a stretched string of length L and pipes of length L, 2L, L/2 and L/2 in options (A), (B), (C) and (D) respectively. The string's tension is adjusted such that the speed of waves on the string equals the speed of sound waves in the air. The fundamental mode of oscillation is then set up on the string. In which pipe will the air column be in the resonance with the sound produced by the string ?

18. In Resonance tube experiment, if 400 Hz tuning fork is used, the first resonance occurs when length of air column in the tube is 19 cm. If the 400 Hz. tuning fork is replaced by 1600 Hz tuning fork then to get resonance, the water level in the tube should be further lowered by (take end correction = 1 cm)

A) 5 cm	(B) 10 cm
C) 15 cm	(D) 20 cm

https://prernaeducation.co.in

PG #2

19.	A heavy but uniform rope of length L is suspended from a ceiling. A particle is dropped from the ceiling at the instant when the bottom end is given the jerk. Where will the particle meet the pulse : (A) at a distance If $\frac{2L}{3}$ from the bottom (B) at a distance $\frac{L}{3}$ from the bottom (C) at a distance $\frac{3L}{4}$ from the bottom (D) None of these		 A horizontal stretched string, fixed at two ends, is vibrating in its fifth harmonic according to the equation, y(x, t) = (0.01 m) sin [(62.8 m⁻¹) x] cos [(628 s⁻¹)t]. Assuming π = 3.14, the correct statement is : (A) The number of nodes is 5. (B) The length of the string is 0.50 m. (C) The maximum displacement of the midpoint of the string its equilibrium position is 0.01 m. (D) The fundamental frequency is 100 Hz.
	(SECT	ON	N-В)
21.	Each of the two string of length 51.6 cm and	27.	7. The equation of a wave is represented by :-
	49.1 cm are tensioned separately by 20 N force.		$y = 10^{-4} \sin\left(100t - \frac{x}{100}\right)$ m where x and y are in
	and equal to 1 gm^{-1} . When both the strings		10^{10} meter and t in second: then the velocity of wave
	vibrate simultaneously the number of beats is		will be :-
22.	A whistle producing sound waves of frequencies	28.	8. A wire having a linear density of 0.05 gm/cm is
	person with speed v ms ⁻¹ . The velocity of sound		stretched between two rigid supports with a tension of 4.5×10^7 dynamics. It is observed that
	in air is 300 ms ⁻¹ . If the person can hear		the wire resonates at a frequency of 420 cycles/
	trequencies upto a maximum of 10,000 Hz, the maximum value of v upto which he can bear the		sec. The next higher frequency at which the
	whistle is:		length of wire is approximately.
23	A motor cycle starts from rest and accelerates		A string fixed at both and has approxitize
_0.	along a straight path at 2 m/s^2 . At the starting	29.	standing wave modes for which distances
	point of the motor cycle there is a stationary		between adjacent nodes are 6 cm and 4 cm.
	when the driver hears the frequency of the siren		The length of the string is :
	at 94% of its value when the motor cycle was	30.	0. A 1m long wire having tension of 100 N and of
	at rest? (Speed of sound = 330 ms ⁻¹)		linear mass density 0.01 kg/m is fixed at end A
24.	The sound intensity is 0.008 W/m ² at a distance		from end B is constrained to be stationary. To
	of 10 m from an isotropic point source of sound.		create resonance in this wire, the minimum
	The power of the source is .		frequency of the tuning fork will be :
25.	A source of sound of frequency 600 Hz is placed		
	1500 m/s and in air it is 300 m/s. The frequency		
	of sound recorded by an observer who is		
	standing in air is :		
26.	Two vibrating strings of the same material but		
	lengths L & 2 L have radii 2 r and r respectively.		
	the strings vibrate in their fundamental modes		
	the one of length L with frequency f_1 and the other		
	with frequency f_2 . The ratio f_1/f_2 is given by :		

JEE CHAPTERWISE TEST