JEE MAIN : CHAPTER SUBJECT :- MATHEMATICS CLASS :- 12 th CHAPTER :- FUNCTION (SECT			DATE NAME SECTION	
1.	Let two functions $f(x)$ and $g(x)$ are defined on $R \rightarrow R$ such that $f(x)$ = $\begin{cases} x^2, & x \in irrational \\ 2-x^2, & x \in rational \end{cases}$ and $g(x) = \begin{cases} 2-x^2, & x \in irrational \\ x^2, & x \in rational \end{cases}$. Then the function $f + g : R \rightarrow R$ is (A) injective as well as surjective. (B) injective but not surjective. (C) surjective but not injective. (D) neither surjective nor injective.	7.	If the function $f: [1, \infty) \rightarrow [1, \infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is (A) $\left(\frac{1}{2}\right)^{x(x-1)}$ (B) $\frac{1}{2}\left(1 + \sqrt{1 + 4\log_2 x}\right)$ (C) $\frac{1}{2}\left(1 - \sqrt{1 + 4\log_2 x}\right)$ (D) not defined $\begin{cases} -1 & , x < 0 \\ 0 & x = 0 \end{cases}$	
2.	Let R be the relation defined on the set of natural numbers N as $R = \{ (x, y) \mid x \in N, y \in N, xRy \implies 2x + y =$ 41}, then which one of the following holds good? (A) R is reflexive (B) R is symmetric (C) R is transitive (D) R is neither reflexive nor symmetric nor transitive	8. 9.	Let $g(x) = 1 + x - [x] \& f(x) = \begin{cases} -1 , x < 0 \\ 0 , x = 0 \\ 1 , x > 0 \end{cases}$ Then for all x, f (g (x)) is equal to (A) x (B) 1 (C) f (x) (D) g (x) If f: [1, ∞) \rightarrow [2, ∞) is given by, f (x) = x + $\frac{1}{x}$, then f ⁻¹ (x) equals: (A) $\frac{x + \sqrt{x^2 - 4}}{2}$ (B) $\frac{x}{1 + x^2}$	
3.	The sum of all possible values of n where $n \in N$, x > 0 and 10 < n \leq 100 such that the equation $[2x^2] + x - n = 0$ has a solution, is equal to [Note: [x] denotes largest integer equal to x.] (A) 150 (B) 175 (C) 190 (D) 210	10.	(C) $\frac{x - \sqrt{x^2 - 4}}{2}$ (D) $1 - \sqrt{x^2 - 4}$ Let E = {1, 2, 3, 4} & F = {1, 2}. Then the number of onto functions from E to F is (A) 14 (B) 16 (C) 12 (D) 8	
4.	If the range of the function $f(x) = \frac{x-1}{p-x^2+1}$ does not contain any values belonging to the interval $\left[-1, \frac{-1}{3}\right]$ then the true set of values of p, is (A) $\left(-\infty, -1\right)$ (B) $\left(-\infty, \frac{-1}{4}\right)$ (C) $(0, \infty)$ (D) $(-\infty, 0)$	11. 12.	Let $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then for what values of α is $f(f(x)) = x$? (A) $\sqrt{2}$ (B) $-\sqrt{2}$ (C) 1 (D) -1 . Let $f: R \rightarrow [1, \infty)$ be a function defined by $f(x) = x^2 - 10ax + 5 - a + 25a^2$. If $f(x)$ is surjective on R, then the value of a is	
5.	The fundamental period of the function $f(x) = 4\cos^4\left(\frac{x-\pi}{4\pi^2}\right) - 2\cos\left(\frac{x-\pi}{2\pi^2}\right)$ is equal to (A) π^3 (B) $4\pi^2$ (C) $3\pi^2$ (D) $2\pi^3$	13.	(A) 0 (B) 1 (C) 2 (D) 4 Let f be a bijective function and $a \neq 0$, then the function $g(x) = a f\left(\frac{x+a}{a}\right)$ has an inverse function which is	
6.	If $g(x^3 + 1) = x^6 + x^3 + 2$, then the value of $g(x^2 - 1)$ is (A) $x^4 - 3x^2 + 3$ (B) $x^4 + x^2 + 4$ (C) $x^4 - 3x^2 + 4$ (D) $x^4 + x^2 + 2$		(A) $\frac{1}{a} f^{-1}(x-1)$ (B) $a \left(f^{-1} \left(\frac{x}{a} \right) - 1 \right)$ (C) $a f^{-1} \left(\frac{x}{a} \right) - 1$ (D) $\frac{1}{a} f^{-1}(ax-1)$	

PRERNA EDUCATION

https://prernaeducation.co.in

011-41659551 || 9312712114

14.	If the equation $ x+3 -2 = p$, where p is a		Then the value of
	constant integer has exactly three distinct solutions, then the number of integral values of		f(g(h(1)))+g(h(f(-3)))+h(f(g(-1))) is equal to
	p, is (A) 0 (B) 1 (C) 2 (C) 4		(A) - 1 $(B) 1$ $(C) - 7$ $(D) 7$
15.	If $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ and $h(x) = \cos^{-1}x$, $0 \le 1$	18.	Let $f(x)$ be a one-to-one function such that $f(1) = 3$, $f(3) = 1$, $f'(1) = -4$ and $f'(3) = 2$. If $g = f^{-1}$, then
	$x \le 1$, then - (A) hogof(x) = gofoh(x) (B) gofoh(x) = fohog(x) (C) fohog(x) = hogof(x) (D) None of these		the slope of the tangent line to $\frac{1}{g}$ at x = 1 is (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{-1}{9}$ (C) $\frac{-1}{18}$ (D) $\frac{1}{32}$
16.	Let $f(x) = \log x$ and $g(x) =$	19.	The smallest positive integral value of $f(x) =$
	$\frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1}$. The domain of the composite function fog(x) is - (A) $(-\infty,\infty)$ (B) $[0,\infty)$		$\frac{x^2 + x + 7}{x + 2}, x \in R \text{ is equal to} $ (A) 1 (B) 2 (C) 3 (D) 4
	(C) $(0, \infty)$ (D) $[1, \infty)$	20.	The sum of all real numbers which are not in the
17.	Consider f, g, h be real-valued functions defined on R. Let f (x) – f (– x) = 0 for all $x \in R$, g (x) + g (– x) = 0 for all $x \in R$ and h (x) + h		range of $f(x) = \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$ is equal to (A) $\frac{3}{2}$ (B) $\frac{1}{2}$
	$(-x) = 0$ for all $x \in \mathbb{R}$. If $f(1) = 0$, $f(4) = 2$, $f(3) = 6$, $g(1) = -1$, $g(-2) = 4$, $g(3) = 5$, and $h(1) = 2$, $h(3) = 5$, $h(6) = 3$.		(A) $\frac{3}{2}$ (B) $\frac{1}{2}$ (C) 1 (D) $\frac{5}{2}$
	(SECT	ION-B)	
21.	Let d be the number of integers in the range of the function f (x) = $\begin{cases} 4, & \text{if } -4 \le x < -2 \\ x , & \text{if } -2 \le x < 7 \\ \sqrt{x}, & \text{if } 7 \le x < 14 \end{cases}$ Also roots of P(x) = x ² + mx - 4m + 20 are α and β .	26.	If f: [4, a] \rightarrow A is a bijective function and defined by f $(\sqrt{x-1} + \sqrt{17-x})$ = $\sqrt{20+2\sqrt{64-(x-9)^2}}$, then find the value
	If $\alpha < \frac{d-3}{4} < \frac{d-3}{2} < \beta$ and the smallest integral value of m is k, then find the value of (k-5).		of $\left[f^{-1}(5)\right]$. [Note : [k] denotes greatest integer less than or equal to k.]
22.	Find the number of integers in the domain of the function $f(x) = \sqrt{x^2 - x } + \frac{1}{\sqrt{9 - x^2}}$.	27.	f(x) and $g(x)$ are linear functions such that for all x, $f(g(x))$ and $g(f(x))$ are identity functions,
23.	The sum of all different values of y satisfying the equation y ([tan x] ² + 5 [tan x] + 6) = 4, where		if $f(0) = 4$, $g(5) = 17$ and $f(136) = 4k$. Then find the value of k.
	$x \in \left(0, \frac{\pi}{2}\right)$ and [k] denotes greatest integer value less than or equal to k,is	28.	Let $f: [1, \infty) \rightarrow [2, \infty)$ defined by $f(x) = x^2 + 2(k^2 - 3k + 1)x + k^2 - 1$. If $f(x)$ both injective and surjective then find the number of all possible integral up log (x) of k .
24.	Let a bijective function $g: R \rightarrow R$ be defined		integral value(s) of k.
	as $g(x) = \begin{cases} x + \alpha^2 + 2, & x \le 2\\ 7 + \alpha x, & x > 2 \end{cases}$ If graph of $y = f(x)$ is reflection of graph of $y = g(x)$ where find $f(41)$	29.	Let f be a real valued function defined by f(x) = $\frac{e^{x} - e^{- x }}{e^{x} + e^{ x }}$, range of f is [a, b), then find the
25.	g(x) w.r.t. line $y = x$, then find f(11). Let f(x) be a real valued function such that f		$e^{a} + e^{a}$ value of (5a + 4b).
	•	1	
	$\begin{aligned} (x) + x^2 + 1 & \geq f(x) + x^2 + 1 \text{and} f(x) \leq 0, \\ \text{then find the absolute value of} \sum_{i=1}^{5} (1 + f(r)). \end{aligned}$	30.	Suppose f is a real valued function satisfying