	JEE MAIN : CHAPTER WISE TEST PAPER-2					
SUBJE	CT :- CHEMISTRY		DATE			
CLASS						
CHAPT			SECTION			
1.	A current of 9.65 A is placed for 3 hr between nickel cathode and Pt anode in 0.5 L of a 2 M solution of Ni(NO3)2. The molarity of Ni2+ after electrolysis would be (A) 0.46M(A) 0.46M(B) 0.92 M (D) none	6.	E° (SRP) of different half cell are given $E^{o}_{Cu^{2+}/Cu} = 0.34 \text{ volt}$; $E^{o}_{Zn^{2+}/Zn} = -0.76 \text{ volt}$ $E^{o}_{Ag^{+}/Ag} = 0.8 \text{ volt}$; $E^{o}_{Mg^{2+}/Mg} = -2.37 \text{ volt}$ In which cell ΔG^{o} is most negative (A) Zn (s) Zn^{2+} (1 M) Mg^{2+} (1 M) Mg (s) (B) Zn (s) Zn^{2+} (1 M) Ag^{+} (1 M) Ag (s)			
2. 3.	The standard reduction potential's of half cell OCI ⁻ /CI ⁻ , OH ⁻ and Cl ₂ /CI ⁻ are 0.94 volt and +1.36 volt respectively. What is the reduction potential of half cell whose cell reaction is represented as $2OCI^{-} + 2H_2O + 2e \longrightarrow Cl_2(g) + 4OH^{-}$ (A) 0.21 V (B) 0.52 V (C) 1.04 V (D) 2.1 V Consider the following Galvanic cell.	7.	(C) Cu (s) Cu ²⁺ (1 M) Ag ⁺ (1 M) Ag (s) (D) Ag (s) Ag ⁺ (1 M) Mg ²⁺ (1 M) Mg (s) Select the correct option if it is know that K_{sp} (AgCl) > K_{sp} (AgBr) > K_{sp} (Agl) (A) $E^{o}_{I^{-}/AgI/Ag} > E^{o}_{Br^{-}/AgBr/Ag} > E^{o}_{CI^{-}/AgCI/Ag}$ (B) $E^{o}_{I^{-}/AgI/Ag} < E^{o}_{Br^{-}/AgBr/Ag} < E^{o}_{CI^{-}/AgCI/Ag}$ (C) $E^{o}_{Ag/AgI/I^{-}} < E^{o}_{Ag/AgBr/Br^{-}} < E^{o}_{Ag/AgCI/CI^{-}}$ (D) None of these			
	H ₂ (g) Voltmeter H ₂ (g) K ⁺ NO ₃ Pt(s) HCl HCl Cathode By what value the cell voltage change when concentration of ions in anodic and cathodic compartments both increased by factor of 10 at 298 K (A) ±0.0591 (B)=0.0591	8.	Which of the following is correct statement regarding conductance? (A) Conductance of HCl solution increases on adding NaOH, before the equivalent point. (B) For potash alum (K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O), $\Lambda_{eq}^{\infty} = 8.\Lambda_{m}^{\infty}$ (C) In general, conductivity increases with increase in concentration (D) On increasing the temperature, the conductance of any conductor increases. The amount of Cu deposited at the cathode in			
4.	(A) 40.0391 (B) -0.0391 (C) -0.1182 (D) 0 The conductance of a salt solution (AB) measured by two parallel electrodes of area 100 cm ² separated by 10 cm was found to be 0.0001 Ω^{-1} . If volume enclosed between two electrode contain 0.5 mole of salt, what is the molar conductivity(Scm ² mol ⁻¹) of salt at same conc. (A) 0.01 (B) 0.02	10.	the electrolysis of aqueous $CuSO_4$ solution in a definite time period depends on (It is given that only Cu is deposited at cathode) (A) Electric current strength (B) Concentration of $CuSO_4$ solution (C) Nature of electrodes (Inert or Cu) (D) Temperature AgNO ₃ (aq) was added to an aqueous NH ₄ Cl solution gradually and the conductivity of solution was measured. The plot of conductance (^) versus the volume of AgNO ₃ is :			
5.	(C) 2×10^{-5} (D) none of theseHow much time is required for complete decomposition of two moles of water using 4 ampere.(A) 3.86×10^5 sec(B) 1.93×10^5 sec(C) 96500 sec(D) 48250 sec		(C) volume volume volume (C) volume volume (D) volume volume			

https://prernaeducation.co.in

 11. Select the incorrect statement with respect to commercial cells. (A) In a dry cell, at cathode reduction of Mn from +4 state to +3 state occurs. (B) During discharging of lead storage cell density of solution decreases. (C) The ethane-oxygen fuel cell with acid electrolyte will produce 2 mole of H⁺ per mole 15. Conductivity of saturated solution of AgC by which of the following options if limit conductance of Ag⁺ and Cl⁻ ions is 60 mol⁻¹ and 75 Ω⁻¹ cm² mol⁻¹ respective of AgCl = 10⁻¹⁰ (A) 6 × 10⁻⁷ Ω⁻¹ cm⁻¹ (B) 1.35 × 10⁻³ Ω⁻¹ cm⁻¹ (C) 1.35 × 10⁻⁶ Ω⁻¹ cm⁻¹ (D) 6 × 10⁻⁵ Ω⁻¹ cm⁻¹ 	Cl is given ting ionic $\Omega \Omega^{-1} \text{cm}^2$ ely & K _{sp}
of electron produced at the anode. (D) Efficiency of a fuel cell can be greater than 16 For an electrochemical reaction occur	rino in a
100%. 12. For the electrochemical cell : $Zn(s) Zn^{2+}(aq) $ Cr(ar) Cr(ar) Cr(ar) Dr(a) Dr(a) Dr(ar) Cr(ar) Cr(ar)	q)
Given : $E_{Zn^{2+}/Zn}^{\circ} = -0.76$ Volt, $E_{Cl^{-}/Cl_{2}(g)}^{\circ}$ = -1.36 Volt Given : $E_{Zn^{2+}/Zn}^{\circ} = -0.76$ Volt, $E_{Cl^{-}/Cl_{2}(g)}^{\circ}$ Given : $E_{Zn^{2+}/Zn}^{\circ} = -0.76$ Volt, $E_{Cl^{-}/Cl_{2}(g)}^{\circ}$	d
From these data one can deduce that : (A) $Zn + Cl_2 \implies Zn^{2+} + 2Cl^-$ is a non- spontaneous reaction at standard conditions. (B) $Zn^{2+} + 2Cl^- \longrightarrow Cl_2 + Zn$ is a spontaneous reaction at standard conditions with $E_{cell}^{\circ} = 2.12 \text{ volt}$. (C) $Zn + Cl_2 \longrightarrow Zn^{2+} + 2Cl^-$ is a spontaneous reaction at standard conditions with $E_{cell}^{\circ} = 2.12 \text{ volt}$. (D) $Zn + Cl_2 \longrightarrow Zn^{2+} + 2Cl^-$ is a spontaneous reaction at standard conditions with $E_{cell}^{\circ} = 2.12 \text{ volt}$. (D) $Zn + Cl_2 \longrightarrow Zn^{2+} + 2Cl^-$ is a spontaneous reaction at standard conditions with $E_{cell}^{\circ} = 0.60 \text{ volt}$ 17. Statement-1 : On increasing concer- conductivity of electrolyte increases. Statement-2 : On increasing concer- number of ions per unit solution increases. Statement-2 is correct explanate statement-1. (B) Statement-1 is true, statement-2 is statement-2 is NOT the correct explanate statement-1. (C) Statement-1 is false, statement-2 is (D) Statement-1 is false, statement-2 is (A) Li (B) Cs (C) Rb (E	entration entration ases. true and tion for true and nation for s false. is true. coelectric
13. During the electrolysis of an aqueous salt solution, the pH in the space near one of the electrode was increased and the other one was decreased. The salt solution was $(A) \text{ NaCl (very dilute)}$ $(B) \text{ ZnCl}_2$ $(C) \text{ NaCl (Conc.)}$ $(D) \text{ Cu(NO}_3)_2$ 19. Let C_{NaCl} and C_{BaSO_4} be the conductance measured for saturated aqueous solutions and BaSO ₄ , respectively, at a temperature Which of the following is false? (A) $C_{\text{NaCl}}(T_2) > C_{\text{NaCl}}(T_1)$ for $T_2 > T_1$ (B) $C_{\text{BaSO}_4}(T_2) > C_{\text{BaSO}_4}(T_1)$ for $T_2 > T_1$	es (in S) s of NaCl ure T.
14. Which of the following statements are correct regarding electrolysis of 0.2 M $Li_2 SO_4$ if appropriate voltage is applied such that only one component can be deposited / liberated at (C) lonic mobilities of ions from boundary increase with T. (D) $C_{NaCl} >> C_{BaSO_4}$ at a given T	oth salts
cathode / anode? 20. The molar conductivity of a conductivity	cell filled n is \land .

(A) H_2 gas will be liberated at anode and O_2 gas at cathode.

(B) pH of the solution will not change due to electrolysis.

(C) Concentration of SO_4^{2-} ion will keep on decreasing due to electrolysis.

(D) At some time in the electrolysis concentration of Li⁺ and SO_4^{2-} can be equal.

and that of 20 moles another identical cell having 80 mL NaCl solution is \wedge_{m2} , The conductivities ex hibited by these two cells are same. The relationship between \wedge_{m2} and \wedge_{m1} is

(A)
$$\wedge_{m2} = 2 \wedge_{m1}$$
 (B) $\wedge_{m2} = \wedge_{m1} / 2$
(C) $\wedge_{m2} = \wedge_{m1}$ (D) $\wedge_{m2} = 4 \wedge_{m1}$

https://prernaeducation.co.in

PG #2

(SECTION-B)

- 21. On passing electricity through nitrobenzene solution, it is converted into azobenzene. Calculate the mass of azobenzene (in mg) if same quantity of electricity produces oxygen just sufficient to burn 96 mg of fullerene (C_{60}). *(Answer by multiplying the 1000)*
- 22. Consider the following galvanic cell: Pt | H_2 (1 bar) | HX || KCl (1 M) | Hg_2Cl_2 (s) | Hg (l) | Pt

At 25° C, emf of the cell is 600 mV. When HX is replaced by a buffer solution at pH 6.80, the emf of cell becomes 750 mV. Calculate the pH of HX solution originally used.

Given : $\frac{2.303 \text{ RT}}{\text{F}}$ = 0.06 V. (Answer by multiplying the pH by 1000)

23. Calculate acid dissociation constant for 0.1 M HCOOH if its solution shows a resistance of 50 Ω when filled in a cell having separation between parallel electrodes 4 cm and cross section area of electrode 10 cm²

Given : $\bigwedge_{m}^{\infty} [Ca(HCOO)_{2}] = 230 \text{ Scm}^{2} \text{ mol}^{-1}$ $\bigwedge_{m}^{\infty} [CaCl_{2}] = 280 \text{ Scm}^{2} \text{ mol}^{-1}$ $\bigwedge_{m}^{\infty} [HCI] = 425 \text{ Scm}^{2} \text{ mol}^{-1}$

[Fill your answer by multiplying the Answer with 10⁵]

- 24. Equivalent conductance of saturated solution of $BaSO_4$ is 200 ohm⁻¹ cm² eqv⁻¹ and specific conductance is 4 × 10⁻⁵ ohm⁻¹ cm⁻¹. K_{sp} of $BaSO_4$ is x × 10^{-y} M² in scientific notation. Value of (x + y) will be :
- 25. A solution of $0.1 \text{ M CH}_3\text{COOH}$ is placed between parallel electrodes of cross-section area 4cm^2 , separated by 2cm. For this solution resistance measured is 100Ω . Calculate elevation in boiling point of the 0.1 M CH₃COOH solution, using following information.

$$\begin{split} & \mathsf{K}_{\mathsf{b}} \texttt{= 0.5 K kg/mol} ; \quad \wedge^{\infty}_{\mathsf{m}}(\mathsf{H}^{+}) \texttt{= 300 Scm}^{2} \\ & \mathsf{mole}^{-1}; \; \wedge^{\infty}_{\mathsf{m}}(\mathsf{CH}_{3}\mathsf{COO}^{-}) \texttt{= 100 Scm}^{2} \, \mathsf{mole}^{-1} \\ & \textbf{Fill your answer by multiplying it with 800.} \end{split}$$

$$K_{a_1}(H_2S) = 10^{-8} M ;$$

$$K_{a_2}(H_2S) = 10^{-13} M ;$$

$$K_{sp}(AgCl) = 10^{-10} M^2$$

$$E^{o}_{Ag^+/Ag} = 0.8 V ;$$

$$\frac{2.303RT}{F} = 0.06$$

[Fill your answer by multiplying it with 100.]

- 27. A current of 0.5 amp is passed through excess of molten mixture of AI_2O_3 and Na_3AIF_6 for 9.65 hours. The mass of AI (in mg) deposited at the cathode, with $\frac{1000}{12}$ % current efficiency is (AI=27).
- **28.** A 1 litre sample of a 0.1 M Cr³⁺ is electrolyzed with a current of 96.5 A. If the remaining Cr³⁺ concentration is 0.08 M then the duration of the process in second is
- 29. At 25°C following cell is at equilibrium under given set of condition, Cd(s) | Cd(OH)₂(s) | NaOH(aq) (0.01M) | H₂(g) (1 bar) | Pt(s)

If
$$E_{Cd^{+2}/Cd} = -0.39$$
 Volt then calculate value
of $\frac{1}{5} \log \frac{1}{Ksp}$.

[**Given**:
$$\frac{2.303\text{RT}}{\text{F}}$$
 = 0.06 at 25°C]

30. In electrolysis of an acetate solution, ethane is produced along with $CO_{2(g)}$ at anode. What is the total volume of the two gases produced (in lit.) at 1 atm and $\frac{10}{0.0821}$ K if current of 2 amp is passed through the solution for 965 hrs.