JEE MAIN ANSWER KEY & SOLUTIONS

CLASS :- 11 th								PAPER CODE :- CWT-13						
1.	(C)	2.	(A)	3.	(D)	4.	(A)	5.	(A)	6.	(D)	7.	(B)	
8.	(B)	9.	(B)	10.	(C)	11.	(B)	12.	(B)	13.	(C)	14.	(C)	
15.	(B)	16.	(C)	17.	(A)	18.	(B)	19.	(A)	20.	(C)	21.	41	
22.	2	23.	8	24.	1	25.	30	26.	3	27.	8	28.	3	
29.	2	30.	10											
						SOLU		(P)						
1.	(C)						Sol.	hea	at releas	e by wat	er = m s	sdθ		
2.	(A)							= 3	00 × 1 ×	25				
Sol.	$m_1 \times$	1 (50 – 3	30) = m ₂	(80 – 50)(i)		- / 2m	500 Cal	co molte	from thi	ie hoat		
	m ₁ +	m ₂ = 40	kg		(i	i)		ann AD	= ml	ce mens		is neal		
•								űQ	dO	7500				
ა. Տის	(D) Water of lake gets cooled by conduction till							$m = \frac{dQ}{L} = \frac{7500}{80} = 93.75 \text{ g.}$						
301.		after that	t it is c	ooled b	v condi	iction			_					
	throu	ah ice.			y conde		9.	(B)						
	,	0					Sol.	All	are in s	eries the	erefore o	current r	emains	
4.	(A)							sar	ne. Her	nce tem	perature	e differe	ence =	
Sol.	$PV = RT \Rightarrow \ PdV = RdT$							(cu	(current × thermal resistance) are equa					
	∴ Co	efficient	of volum	ne exp <mark>a</mark> l	nsion			for	every ca	ase.				
	= 1 4	$\frac{dV}{dV} = \frac{R}{dV}$	1				10	(\mathbf{C})						
	Vo	dT ΡV	/ Т				Sol			t				
_	(•)									·				
5.	(A)	Б 22					11.	(B)						
Sol.	$\frac{C}{5} =$	$\frac{F-32}{0}$					Sol.	ms	_A (32 – 2	0) = ms _⊟	(40 – 32	2)		
	3	9						12s	$s_A = 8s_B$					
	$\frac{\Delta C}{5}$ =	$=\frac{\Delta F}{\Omega}$						s _A	$=\frac{2}{}$					
	5	5						s_B	3					
	∆F =	$9 \times \frac{3}{5} =$	= 9°											
		5					12.	(B)					1	
6.	(D)	c		^		a .	Sol.	Ha	T OT KE	is share	d by ead	ch ball	$\frac{-}{2}$ KE =	
501.	Slope of AH vs AH graphs give heat capacity'.							m ₁ s	$s_1T_1 = m$	₂ s ₂ T ₂				
	\therefore Specific heat capacity = $\frac{\text{heat capacity}}{1}$						13.	(C)						
				mass				А		В				
	$=\frac{\tan 45^{\circ}}{4}$ kJ/kg/°C						Sol.	Sol.						
	$\frac{2}{2}$								$-\Delta \ell$	_				
	= 0.5	KJ/Kg/°C	ر					($x = \frac{1}{L\Delta T}$	-				
7.	(B)							for	A: α=	$\Delta \ell_1 =$	⇒ ∆ℓ₁ = I	ΔΤ		
Sol.	$\frac{\mathrm{mL}}{\mathrm{mL}} = \frac{\mathrm{K}_{1}\mathrm{A}(\mathrm{T}_{1}-\mathrm{T}_{2})}{\mathrm{K}_{1}\mathrm{A}(\mathrm{T}_{1}-\mathrm{T}_{2})}$							LAT						
- • • •	t_1]	L					for	B: 2α	= $\Delta \ell_2$	$\Rightarrow \Delta \ell_2$	= 4L α Δ	Т	
	mL	$= K_2 A($	$\mathbf{T_1} - \mathbf{T_2})$					_		2LΔT	-			
	t ₂		L					For	compos	sition	T A T	41	-	
	$K_1 _ t_2$							α_{ave}	$\alpha_{\text{avg.}} = \frac{\Delta \ell_1 + \Delta \ell_2}{2L + T} = \frac{\alpha L \Delta T + 4L \alpha \Delta T}{2L + T} = \frac{5}{2} \alpha$					
	$\overline{K_2}$	t ₁						·	3L	Δ1	3L/	14	3	

$$\begin{array}{ll} \mbox{14.} & (C) \\ \mbox{Sol.} & \mbox{Temperature of junction A is } T_A \\ & & \frac{KA(T-T_A)}{\ell} = \frac{KA(T_A-0)}{\ell} \\ & \Rightarrow T-T_A = T_A \\ & \Rightarrow T_A = \frac{T}{2} \end{array}$$

(B)

Sol.

- **16.** (C)
- Sol. Thermal expansion in isotropic bodies is independent of shape size & availability of cavity.
- **17.** (A)
- Sol. $\frac{T_1 T}{x} = \frac{T T_2}{L x}$ $\Rightarrow T_1 L T_1 x + T x T L = T x T_2 x$ $T L = (T_2 T_1) x + T_1 L$
- **18**. (B)
- **Sol.** Amount of steam required to convert all the ice in water at 100°C is $\frac{10}{3}$ gm.
- **19**. (A)
- **Sol.** The conductivity more in Cu.

20. (C)

Sol.

Resistance of inner cylinder R₁ =
$$\frac{\ell}{k_1 \pi R^2}$$

Resistance of outer cylinder

$$\mathsf{R}_2 = \frac{\ell}{\mathsf{k}_2(4\pi\mathsf{R}^2 - \pi\mathsf{R}^2)}$$

As inner & outer cylinder in parallel

$$\mathsf{R}_{\mathsf{eq}} = \frac{\mathsf{R}_1 \mathsf{R}_2}{\mathsf{R}_1 + \mathsf{R}_2}$$

21. 41
Sol. Neglecting other heat losses
Heat lost by water = Heat gained by
thermometer

$$\therefore m_1 s_1 (\theta_1 - 40^\circ) = m_2 s_2 (40^\circ - 10^\circ)$$

 $m_1 = mass of water
 $m_2 = mass of thermometer$
 $s_2 = specific heat of thermometer
 $\Rightarrow \theta_1 = 40.6 \, ^\circ C$
 $\approx 41^\circ C$
22. 2
Sol. $x = \ell_{0} \alpha t$
 $x = 2$
23. 8
Sol. $-\frac{dT}{dt} = \frac{K}{100 \times S_w} (T - T_0)$
 $\int_{40}^{35} \frac{-dT}{T - T_0} = \int_{0}^{5} \frac{K}{100 \times S_w} dt$
 $\int_{40}^{35} \frac{-dT}{T - T_0} = \int_{0}^{2} \frac{dt}{100 \times \rho_c S_c}$
 $p_c = \frac{4}{5} g/cm^3 = \frac{4 \times 10^{-3} kg}{5 \times 10^{-6} m^3} = \frac{4}{5} \times 10^3$
 $= \frac{40}{5} \times 10^2 = 800 kg/m^3$
24. 1
Sol. $\frac{40 - T}{R_H/2} = \frac{T - 20}{R_H/2} + \frac{T - 0}{R_H/4}$
 $T = 15^\circ C$
 $\frac{T - 0}{R_H/4} = i_H \Rightarrow i_H = 6 J/S$
Heat supplied $= 6 \times 5.6 \times 10^4 = 3.36 \times 10^5$
J In 5.6 × 10^4s. amount of ice mL_f = 3.36 \times 10^5$
Sol $\frac{K_1}{\sigma^\circ C} \frac{K_2}{T - 0} = 3.77 \Rightarrow \frac{K_1}{K_2} = 3.77$
Heat current is same $i_H = \frac{T - 0}{R_2}$
Heat current is same $i_H = \frac{T - 0}{R_2}$$

$$= \frac{100 - T}{R_1}$$

$$\Rightarrow \frac{100 - T}{T} = \frac{R_1}{R_2} = \frac{K_2}{K_1} = 7/3$$

$$\Rightarrow 300 - 3 T = 7T \Rightarrow T = 30^{\circ}C \text{ Ans.}$$

26.

3

KA When heat is transferred from first vessel to second, temperature of first vessel decreases while that of second vessel increases. Due to both there reasons, difference between temperature of vessels decreases.

Let at an instant t, the temperature difference between two vessels be θ .

$$H = \frac{\theta}{R} = \frac{KA\theta}{\ell}$$
$$dQ = Hdt = \frac{KA\theta}{\ell} dt \qquad \dots (i)$$

Since gases are contained in two vessels, therefore, processes on gases in two vessels are isochoric.

Hence, decrease in temperature of gas in first vessel,

$$\Delta \theta_1 = \frac{dQ}{nC_v} = \frac{dQ}{2 \times \frac{5R}{2}} = \frac{dQ}{5R}$$

Increase in temperature of gas in second vessel is

$$\Delta \theta_2 = \frac{dQ}{4 \times \frac{3R}{2}} = \frac{dQ}{6R}$$

 \therefore Decrease in temperature difference $(-d\theta) = A\theta_1 + A\theta_2$

$$(-d\theta) = \Delta\theta_1 + \Delta\theta_2$$
$$-d\theta = \frac{dQ}{R} \times \frac{11}{30}$$
$$or - \int_{50}^{25} \frac{d\theta}{\theta} = \frac{KA \times 11}{30\ell R} \int_{0}^{t} dt$$

t = 3 seconds.

27. 8
Sol.
$$m = \frac{64}{8} = 8 \text{ gm}$$

3

Sol. Let T = 100° C
& T₀ = 50°C
Heat = (T - T₀)
$$\frac{A}{\ell}$$
 (K_s + K_B) × 10 × 60
= (100 - 50) × $\left(\frac{0.2 \times 10^{-4}}{31 \times 10^{-2}}\right)$ × (46 + 109)
× 10 × 60
= 300 J

29. 2
Sol.
$$\frac{d\theta}{dt} = \frac{100 - 0}{R_{eq}}$$
; T_B = 40°C, T_D = 60°C

Sol.

$$i_{1} = \frac{dQ_{1}}{dt} = \frac{(200 - 100)kA}{x}$$

$$i_{1} = \frac{dQ_{1}}{dt} = \frac{(200 - 100)kA}{x}$$

$$i_{2} = \frac{dQ_{2}}{dt} = \frac{(200 - 0)kA}{(\ell - x)} = L_{f}\frac{dm_{fusion}}{dt}$$

$$\frac{dm_{steam}}{dt} = \frac{dm_{fusion}}{dt}$$
$$\frac{100kA}{x L_v} = \frac{200kA}{(\ell - x)L_f}.$$
$$\Rightarrow x = \frac{2\ell}{29} = 0.1 \text{ m} = 10 \text{ cm}$$

PRERNA EDUCATION