JEE MAIN : CHAPTER WISE TEST-11						
SUBJE	ECT :- MATHEMATICS	DATE				
CLASS :- 11 th			NAME			
CHAPTER :- COMPLEX NUMBER		SECTION				
	(SECT	ION A)				
1.	The locus of the point whose position vector is given by $(a + ib)^5 + (b + ia)^5$ (where a b are real parameters) is-	7.	If $\left z - \frac{2}{z}\right = 2$, then the	greatest value of z		
	(A) $y = x$ (B) $y = -x$		IS			
	(C) $v = mx$, $m \in R$ (D) not defined		(A) 1 +√2	(B) 2 + √2		
			(C) $\sqrt{3}$ +1	(D) $\sqrt{5}$ + 1		
2.	If $\left(\frac{3-z_1}{2-z_1}\right)\left(\frac{2-z_2}{3-z_2}\right) = k$, then points A(z ₁), B(z ₂), C(3, 0) and D (2, 0) (taken in clockwise sense) will (A) lie on a circle only for k > 0	8.	The greatest and the z_2 if $z_1 = 24 + 7i$ respectively (A) 31, 19 (C) 31, 25	least value of $ z_1 + and z_2 = 6$ are (B) 25, 19 (D) None of these		
	(B) lie on a circle only for $k < 0$	٥	lf a B a S are four co	mplox numbors such		
	(C) lie on a circle $\forall k \in R$ (D) be the vertices of a square $\forall k \in (0, 1)$	Э.	that $\frac{\gamma}{2}$ is real and $\alpha \delta$	$\delta - \beta \gamma \neq 0$, then z =		
3.	A and B represent the complex numbers 1		$\frac{\alpha + \beta t}{\gamma + \delta t},$	$p = p_{f} \neq 0$, then $z =$		
	+ ai and 3 + bi and $\triangle OAB$ is an isosceles triangle right- angled at A. Then the values of a and b can be- (A) a = 2, b = -1 (B) a = 1, b = -2 (C) a = 2, b = 1 (D) a = 2, b = -2	10.	t ∈ R represents a (A) circle (C) ellipse If α and β are roots of	 (B) parabola (D) straight line the equation ax² + 		
4.	If the imaginary part of the expression $\frac{z-1}{\rho_i}$		bx + c = 0 then roots + 1) ² - b(2x + 1)(3 - x	of the equation $a(2x) + c(3-x)^2 = 0$ are:		
	$e^{\theta i}$		(A) $\frac{2\alpha+1}{\alpha-3}$, $\frac{2\beta+1}{\beta-3}$	$(B)\frac{3\alpha+1}{\alpha-2},\frac{3\beta+1}{\beta-2}$		
	(A) a straight line parallel to x-axis (B) a parabola		$(C)\frac{2\alpha-1}{\alpha-2},\frac{2\beta+1}{\beta-2}$	(D) None of these		
	(C) a circle of radius 1(D) None of these	11.	Let z, w be two non z such that $ z = w &$	ero complex number arg (z) + arg(w) = π		
5.	The lines $\vec{r} = i - j + \lambda(2i + k)$ and $\vec{r} = (2i - j) + \mu(i + j - k)$ intersect for (A) $\lambda = 1, \mu = 1$		(A) \overline{w} (C) w	$ (B) - \overline{w} \\ (D) - w $		
	(B) $\lambda = 2, \mu = 3$	12.	Equation of tangent d	rawn to circle z = r		
	(C) all values of λ and μ		at the point A (z_0) is			
	(D) no value of λ and μ		(A) $R_e\left(\frac{z}{z_0}\right) = 1$	(B) $R_e\left(\frac{z_0}{z}\right) = 1$		
6.	The plane $2x - y + 3z + 5 = 0$ is rotated through 90° about its line of intersection with the plane $5x - 4y + 2z + 1 = 0$. The		(C) Im $\left(\frac{z}{z_0}\right) = 1$	(D) Im $\left(\frac{z_0}{z}\right)$ = 1		
	(A) $6x - 9y - 29z - 31 = 0$ (B) $27x - 24y - 26z - 13 = 0$	13.	The locus of the cent touches the circles z = b externally will be -	tre of a circle, which $-z_1 = a$ and $ z - z_2 $		
	(C) 43x – 32y – 2z + 27 = 0 (D) 26x – 43y – 151z – 165 = 0		(A) an ellipse (C) a circle	(B) a hyperbola(D) None of these		

PG #1

14.	The relation between the real numbers a	18.	If 2 cos θ = x + $\frac{1}{2}$ and 2 cos ϕ = y + $\frac{1}{2}$.	
	and b, which satisfy the equation $\frac{1-ix}{1+ix} = a$			
	–ib, for some real value of x, is		then $\frac{x}{y} + \frac{y}{x}$ equals	
	(A) $(a - b) (a + b) = 1$ (B) $\left(\frac{a - b}{a + b}\right) = 1$		(A) $2 \cos (\theta - \phi)$ (B) $2 \cos (\theta + \phi)$ (C) $2 \sin (\theta - \phi)$ (D) $2 \sin (\theta + \phi)$	
	(C) $a^2 + b^2 = 1$ (D) None of these	19.	If Z is a point on the circle $ Z - 1 = 1$, then	
15.	In the above question the maximum value		$\frac{Z-Z}{Z}$ equals	
	of \angle PAB + \angle PBC + \angle PCD + \angle PDA is equal		(A) i tan (arg Z) (B) i cot (arg Z) (C) i tan (arg (Z –1)) (D) i cot (arg (Z –1))	
	to-	20.	Let $Z_i = r_i$ (cos θ_i + i sin θ_i), i = 1, 2, 3 and	
	(A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{\pi}{2}$		$\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} = 0.$ Consider the $\triangle ABC$	
16	If there exists an 7 satisfying both I7 _mil		formed by $\frac{\cos 2\theta_1 + i \sin 2\theta_1}{Z_1}$,	
10.	= m + 5 and $ Z-4 < 3$, then the set of all permissible values of m belong to the set -		$\frac{\cos 2\theta_2 + i \sin 2\theta_2}{Z_2},$	
	(A) (-3, 3) (C) (-5, -3) (B) (-3, 9) (D) (4, 9)		$\frac{\cos 2\theta_3 + i\sin 2\theta_3}{Z_3}.$	
17.	The number of 15th roots of unity which are also the 25th root of unity is : (A) 3 (B) 5 (C) 10 (D) none of these		Then the complex number 0 lies (A) on the side BC (B) outside the triangle (C) inside the triangle (D) on the side CA	
	(SECT	ION B)		
21.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum	ION B) 26.	If z_1 is the complex number satisfying $z + \sqrt{2} + \frac{1}{2} + \frac$	
21.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of	ION B) 26.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where $a, b \in N$, then $a + b$ is	
21.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P.	ION B) 26.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where $a, b \in N$, then $a + b$ is equal to	
21. 22.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum	ION B) 26. 27.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where a, $b \in N$, then a + b is equal to Let $ z = 2$ & w = $\frac{z+1}{z-1}$ where z, w \in C. If M	
21. 22.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of	ION B) 26. 27.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where a, $b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus	
21. 22.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function)	ION B) 26. 27.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$	
21.	(SECT Two lines $zi - \overline{z} i + 2 = 0$ and $z(1+i) + \overline{z} (1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function)	ION B) 26. 27.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function.	
21. 22. 23.	(SECT Two lines $zi - \overline{z}i + 2 = 0$ and $z(1+i) + \overline{z}(1-i)$ + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y $= 2[x] + 3 = 3[x - \lambda]$. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the	ION B) 26. 27. 28.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is e^a cosb, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i$	
21. 22. 23.	(SECT Two lines $zi - \overline{z}$ i + 2 = 0 and $z(1+i) + \overline{z}$ (1-i) + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the value of $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$, then find the value of n	ION B) 26. 27. 28.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is $e^a \cosh$, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i \sin \frac{\pi}{3^t}$ r = 1, 2, 3,, t = 1, 2, 3, The	
21. 22. 23.	(SECT Two lines $zi - \overline{z}$ i + 2 = 0 and $z(1+i) + \overline{z}$ (1-i) + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the value of $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$, then find the value of n.	ION B) 26. 27. 28.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is $e^a \cosh$, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i \sin \frac{\pi}{3^t}$, $z_t = 1, 2, 3,, t = 1, 2, 3,$ The value of $(x_1 x_2 x_3)$	
21. 22. 23. 24.	(SECT Two lines $zi - \overline{z}$ i + 2 = 0 and $z(1+i) + \overline{z}$ (1-i) + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the value of $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$, then find the value of n. If $\left \frac{z_1 - 3z_2}{3 - z_1 \overline{z}_2} \right = 1$ and $ z_2 \neq 1$, then $ z_1 $ is	ION B) 26. 27. 28. 28.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is $e^a \cosh$, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i \sin \frac{\pi}{3^t}$, $z_t = 1, 2, 3,, t = 1, 2, 3,$ The value of $(x_1 x_2 x_3)$ If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $\alpha = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$.	
21. 22. 23. 24.	(SECT Two lines $zi - \overline{z}$ i + 2 = 0 and $z(1+i) + \overline{z}$ (1-i) + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the value of $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$, then find the value of n. If $\left \frac{z_1 - 3z_2}{3 - z_1 \overline{z}_2} \right = 1$ and $ z_2 \neq 1$, then $ z_1 $ is equal to	ION B) 26. 27. 28. 29.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is $e^a \cosh$, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i \sin \frac{\pi}{3^t}$ r = 1, 2, 3,, t = 1, 2, 3, The value of $(x_1 x_2 x_3 \dots$ If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1$, then $\cos (\alpha - \beta) + \cos (\beta - \alpha) + \cos (\beta - \alpha) = 0$	
21. 22. 23. 24. 25.	(SECT Two lines $zi - \overline{z}$ i + 2 = 0 and $z(1+i) + \overline{z}$ (1-i) + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the value of $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$, then find the value of n. If $\left \frac{z_1 - 3z_2}{3 - z_1 \overline{z}_2} \right = 1$ and $ z_2 \neq 1$, then $ z_1 $ is equal to Let $z = \frac{(2\sqrt{3} + 2i)^8}{6} + \frac{(1+i)^6}{5}$. Let θ be	ION B) 26. 27. 28. 29.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is $e^a \cosh$, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i$ $\sin \frac{\pi}{3^t} r = 1, 2, 3,, t = 1, 2, 3,$ The value of $(x_1 x_2 x_3)$ If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1$, then $\cos (\alpha - \beta) + \cos (\beta - \gamma) + \cos (\gamma - \alpha) =$	
21. 22. 23. 24. 25.	(SECT Two lines $zi - \overline{z}$ i + 2 = 0 and $z(1+i) + \overline{z}$ (1-i) + 2 = 0 intersect at a point P. Find the sum of minimum and maximum modulus of complex number of a point on second line which is at a distance of 2 units from point P. If z is a complex number and the minimum value of $ z + z - 1 + 2z - 3 $ is λ and if y = 2[x] + 3 = 3[x - λ]. Then find the value of [x + y] (where [.] denotes the greatest integer function) If $\alpha = e^{\frac{2\pi i}{7}}$ and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then the value of $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$, then find the value of n. If $\left \frac{z_1 - 3z_2}{3 - z_1 \overline{z}_2} \right = 1$ and $ z_2 \neq 1$, then $ z_1 $ is equal to Let $z = \frac{(2\sqrt{3} + 2i)^8}{(1-i)^6} + \frac{(1+i)^6}{(2\sqrt{3} - 2i)^8}$. Let θ be the argument of z such that $\theta \in (-\pi, \pi]$	ION B) 26. 27. 28. 29. 30.	If z_1 is the complex number satisfying $z + \sqrt{2} z + 1 + i = 0$ and real part of e^{iz_1} is $e^a \cosh$, where $a, b \in N$, then $a + b$ is equal to Let $ z = 2 \& w = \frac{z+1}{z-1}$ where $z, w \in C$. If M and m are greatest and least modulus value of w then find $\left[\frac{M}{m}\right]$, where $[] \rightarrow$ greatest integer function. If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, $z_t = \cos \frac{\pi}{3^t} + i$ $\sin \frac{\pi}{3^t} r = 1, 2, 3,, t = 1, 2, 3,$ The value of $(x_1 x_2 x_3)$ If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1$, then $\cos (\alpha - \beta) + \cos (\beta - \gamma) + \cos (\gamma - \alpha) =$ If $x^2 - x + 1 = 0$, then the value of $\left(\sum_{n=1}^{5} (z^n + \frac{1}{2})\right)^2$ in	

PG #2

https://prernaeducation.co.in