JEE MAIN ANSWER KEY & SOLUTIONS

SUBJECT :- PHYSICS CLASS :- 11 th CHAPTER :- SIMPLE HARMONIC MOTION											PAPER CODE :- CWT-10			
ANSWER KEY														
5. 2. 9.	(C) (D) (A) 2 2	2. 9. 16. 23. 30.	(C) (D) (C) 75 6	3. 10. 17. 24.	(A) (C) (B) 3	4. 11. 18. 25.	(C) (D) (C) 10 N	5. 12. 19. 26.	(C) (C) (B) 40 cm	6. 13. 20. 27.	(D) (C) (A) 5	7. 14. 21. 28.	(D (C 8 20	
	-		Ū			SOLU	TIONS							
ol.	(C) $x = A \cos \omega t$, $y = A \sin \omega t$ or $x^2 + y^2 = A^2$ Thus the motion of the particle is on a circle. (C)						5. Sol.	(C) Let displacement of block is x ₁ and of cart is as shown						
ol.	The total distance moved by particle in one time period is four times the amplitude.							x ₂ k x ₁ k M M by linear momentum conservation						
ol.	(A) Total Energy of S.H.M. remoins constant so average energy = Total energy													
ol.	(C) In case (i), springs are connected in parallel, so, effective force constant is $k_1 = k + k = 2k$ In case (ii), springs are connected in series so, effective force constant k_2 is given by $\frac{1}{k_2} = \frac{1}{k} + \frac{1}{k} = \frac{2}{k}$							mv ₁ = For 1s as F = 2l	Mv_{2} st particle. $x(x_{1} + x_{2}) =$ $1 + \frac{m}{M}\alpha_{1} =$	$\Rightarrow V_2 =$ Force $m\omega^2 x_2$	= mv ₁ M equation	n can be		
	$ k_2 k k k \\ \Rightarrow \qquad k_2 = \frac{k}{2} $							So	T = 2π \	Mm 2k(M+	<u>ı</u> - m)			
	In case (i), time period						6.	(D)						
	$T_{1} = 2\pi \sqrt{\frac{M}{K_{1}}} = 2\pi \sqrt{\frac{M}{2k}}$						Sol.	T = $2\pi \sqrt{\frac{\ell}{g}}$, As it does not depend on anplipud						
	and in case (ii), time period $T_2 = 2\pi \sqrt{\frac{M}{k_2}} = 2\pi \sqrt{\frac{M}{k/2}}$						7.	 ∴ % change in time period is 0 % Herce option (D) is correct. (D) 						
	$=2\pi \sqrt{\frac{2M}{k}}$						r. Sol.	$y = 10 \left(\frac{1}{2} \sin 3\pi t + \frac{\sqrt{3}}{2} \cos 3\pi t \right) = 10 \sin (3\pi t + \frac{\pi}{3})$						
	$\therefore \qquad \frac{T_1}{T_2} = \sqrt{\frac{1}{4}}$						8.	thus amplitude is 10 m or 1000 cm (D)						
	$=\frac{1}{2}=0.5$						Sol.	$P_{AV} = \frac{1}{4} KA^2$ and $K_{AV} = \frac{1}{4} KA^2$						

9. (D)
Sol. Time perisd = T =
$$2\pi \sqrt{\frac{m}{K}}$$

Spring dirided into two equal parts \longrightarrow Lengh
reduced to half
We know K × $\frac{1}{\ell}$
 \therefore K become twice
 $K_{new} = 2\pi \sqrt{\frac{m}{K_{new}}} = 2p \sqrt{\frac{m}{2K}}$
 $= \frac{1}{\sqrt{2}} \left(2p \sqrt{\frac{m}{K}} \right) = \frac{T}{\sqrt{2}}$
10. (C)

Sol. $f_1 = \frac{1}{2\pi} \sqrt{\frac{K}{m_1}}$ $f_2 = \frac{1}{2\pi} \sqrt{\frac{K}{m_2}}$ $f_2 = \frac{f_1}{2}$ or $m_2 = 4m_1$ or $m_2 - m_1 = 3$ kg

- 11. (D)
- PE is related to reference. Only when PE at Sol. mean position is taken zero, the assertion is true.

12. (C)

Kinetic energy of particle of mass m in SHM at Sol. any point is $= m\omega^2 (a^2 - x^2)$

> and potential energy = $\left(\frac{1}{2}m\omega^2 x^2\right)$ where a is amplitude of particle and x is the distance from mean position. So, at mean position, x = 0

K.E. =
$$\frac{1}{2}$$
m ω^2 a² (maximum)
P.E. = 0 (minimum)

13. (C)

Sol.
$$T = 2\pi \sqrt{\frac{M}{k}}$$
(i)
 $T' = 2\pi \sqrt{\frac{M+m}{k}}$

$$\Rightarrow \frac{5T}{2} = 2\pi \sqrt{\frac{M+m}{L}} z.....(ii)$$

$$\frac{3}{3} = 2\pi \sqrt{\frac{k}{k}} 2...$$

Form equation (i) and (ii)

$$\therefore \qquad \frac{3}{5} = \sqrt{\frac{M}{M+m}} \qquad \frac{9}{25} = \frac{M}{M+m}$$
$$\Rightarrow 9M + 9m = 25M$$
$$\Rightarrow \qquad 16M = 9m$$
$$\frac{m}{M} = \frac{16}{9}$$

14. (C)

Sol.

In simple harmonic motion when a particle is displaced to a position from its mean position, then its kinetic energy gets converted into potential energy and vice-versa. Hence, total energy of a particle remains constant or the total energy in simple harmonic motion does not depend on displacement x.

K.E. =
$$\frac{1}{k}(A^2 - x^2)$$

K.E. =
$$\frac{1}{2}k(A^2 - x^2)$$
 = $\frac{1}{2}kA^2\sin^2\omega t$
= $\frac{1}{2}kA^2\frac{(1 - \cos 2\omega t)}{2}$ = $\frac{kA^2}{4}(1 - \cos 2\omega t)$

Frequce of K.E. is double of acceleration.

17. (B)

Sol.
$$x_1 = A \sin(\omega t + \phi_1)$$

 $x_2 = A \sin(\omega t + \phi_2)$
 $x_1 - x_2 = A \left[2 \sin \left[\omega t + \frac{\phi_1 + \phi_2}{2} \right] \sin \left[\frac{\phi_1 - \phi_2}{2} \right] \right]$
 $A = 2A \sin \left(\frac{\phi_1 - \phi_2}{2} \right)$
 $\frac{\phi_1 - \phi_2}{2} = \frac{\pi}{6}$
 $\phi_1 = \frac{\pi}{3}$ Ans.

18.

(C)

v

Sol.
$$v = \omega \sqrt{A^2 - \left(\frac{2A}{3}\right)^2}$$
 $v = \sqrt{5} \frac{A\omega}{3}$
 $v = 3v = \sqrt{5} A\omega$

$$v_{\text{new}} = \omega \sqrt{A_{\text{new}}^2 - x^2} \Rightarrow \sqrt{5} \text{ A}\omega$$
$$= \omega \sqrt{A_{\text{new}}^2 - \left(\frac{2A}{3}\right)^2}$$
$$A_{\text{new}} = \frac{7A}{3}$$

19. 24. (B) 3 $kx_1 = (4 + 8)g$ $kx_2 = 4g$ $k(x_1 - x_2) = kA = 8g$ Sol. Sol. $y = A \sin \omega t$ $\frac{A}{2} = A \sin \omega t$ $\omega t = \frac{\pi}{\epsilon}$ 4 $\frac{2\pi}{T}t = \frac{\pi}{6}$ $t = \frac{T}{12}$ 20. (A) Sol. We can say motion of a pendulum is angular SHM if angular amplitude i.e. '0' is very very small. Total time period = $\frac{1}{3}$ = 21. 8 Ratio = $\left(\frac{\overline{T}}{2}\right)$ = 3 Sol. L Extreme $a = 0 \implies mean$ 25. 10 N $0 = 2(4 - x) \Rightarrow x_{mean} = 4$ ⇒A=4m $T_{a} = \sqrt{\frac{\frac{111}{k_{1}k_{2}}}{\frac{k_{1}k_{2}}{k_{1}+k_{2}}}}$ \Rightarrow x_{max} = 8 $T_a = 2T_b$ Sol. 22. Sol. $T_{b} = 2\pi \sqrt{\frac{m}{(k_{1} + k_{2})}}$ $\omega t = \frac{\pi}{3} \Rightarrow t = \frac{\pi}{3\omega} = \frac{T}{6} = 2s$ $\frac{\mathbf{k}_1 + \mathbf{k}_2}{\mathbf{k}_1 \times \mathbf{k}_2} = 4\left(\frac{1}{\mathbf{k}_1 + \mathbf{k}_2}\right)$ 23. 75 $\omega = \sqrt{\frac{k_{eq}}{m}} = \sqrt{40}$ Sol. $(k_1 + k_2)^2 = 4(k_1k_2)$ when spring breaks new $\omega = \sqrt{20}$ $(10 + k_2)^2 = 4(10k_2) \Rightarrow k_2 = 10 \text{ N/m Ans.}$ Equilibrium position of original system $(2k)x_0 = mg$ 26. 40 cm $x_0 = \frac{1}{4} m$ $g = A\omega^2 \Rightarrow A = \frac{10}{(0.5)^2} = 40 \text{ cm}$ or Sol. New equilibrium is at kx = mg $x = \frac{1}{2} m$ 27. $kx_{a} = mq$ Sol. thus $v_{max} = Aw = (\sqrt{40}) \times (\frac{1}{2})$ $x_0 = \frac{\sqrt{2g}}{200}$ $\sqrt{10} = \sqrt{20} \sqrt{A^2 - \frac{1}{16}}$ $\theta = \omega \times t = \frac{2\pi}{T} \times \frac{3T}{8} = \frac{3\pi}{4}$ $\frac{1}{2} = A^2 - \frac{1}{16}$ $A^2 = \frac{1}{2} + \frac{1}{16} = \frac{8+1}{16} = \frac{9}{16} \implies A = \frac{3}{4}m$ $S = x_0 \cos \frac{\pi}{4} = \frac{x_0}{\sqrt{2}} = 5 \text{ cm}$

28. 20
30. 6
Sol.
$$\frac{1}{2} kx_0^2 - mgx_0 \sin 30^\circ = 0$$

 $x_0 = \frac{mg}{k} = \frac{20}{100} = 20 \text{ cm}$
29. 2
Sol. $T = 2\pi \sqrt{\frac{\ell}{g}} \implies \frac{n\Delta T}{nT} = \frac{\Delta l}{2l}$
 $\frac{T}{100T} = \frac{\Delta l}{2l}$
 $\frac{\Delta l}{l} = \frac{200}{100} = 2$
30. 6
Sol. $\omega_1 = \sqrt{\frac{1200}{3}} = 20$
 $\omega_2 = \sqrt{\frac{1200}{27}} = \frac{20}{3}$
 $\omega_1 t = (2x + 1)\frac{\pi}{2}$
 $\omega_2 t = (2m + 1)\frac{\pi}{2}$
 $\omega_1 t = 3$
 $\omega_1 t = \frac{3\pi}{2} \Rightarrow t = \frac{6\pi}{80}$

