JEE MAIN ANSWER KEY & SOLUTIONS

take $a = b$]

1

$$
4. (A)
$$

Sol. Equation of tangent at M $\left(\sqrt{3}, \frac{1}{2}\right)$ J $\left(\sqrt{3},\frac{1}{2}\right)$ \setminus ſ 2 $\overline{3}, \frac{1}{2}$ is

 $\sqrt{3}$ x + 2y = 4

Also, distance of PQ from (0<mark>, 0) = $\sqrt{7}$ </mark> 4

y
\n
$$
y
$$

\n y
\n y

Now, PQ =
$$
2 \sqrt{5 - \frac{16}{7}} = 2 \sqrt{\frac{19}{7}}
$$

∴ Area of (ΔOPQ) =
$$
\frac{1}{2} \times \frac{4}{\sqrt{7}} \times 2\sqrt{\frac{19}{7}}
$$

$$
=\frac{4\sqrt{19}}{7}
$$
. Ans.]

5. (C)

Sol. Equation of tangent with slope =
$$
\frac{-3}{4}
$$
, is

$$
y = \frac{-3}{4}x + C
$$

Now,
$$
C = \sqrt{32 \times \left(\frac{-3}{4}\right)^2 + 18} = \sqrt{18 + 18}
$$

= 6 (Using condition of tangency)

$$
\therefore \qquad y = \frac{-3}{4}x + 6 \Rightarrow 3x + 4y = 24
$$

It meets the coordinate axes in A and B. So A(8, 0) and B(0, 6).

Hence, required area of
$$
\triangle AOB = \frac{1}{2}(8)(6)
$$

= 24. **Ans.**]

6. (A)

Sol. Let P (x, y) be any point on the ellipse whose focus is $S(-1,1)$ and the directrix is $x - y + 3 = 0$.

PM is perpendicular from $P(x, y)$ on the directrix $x -y + 3 = 0$. Then by definition SP = ePM \Rightarrow (SP)²=e² (PM)² ⇒ $(x + 1)^2 + (y - 1)^2 = \frac{1}{4} \left\{ \frac{x - y + 3}{\sqrt{2}} \right\}^2$ 4 $\sqrt{2}$ \Rightarrow 8 (x² + y² + 2x - 2y + 2) = x² + y² + 9 – 2xy + 6x – 6y \Rightarrow 7x² + 7y² + 2xy + 10x - 10y + 7 = 0

which is the required equation of the ellipse.

7. (B)

Sol. Let the equation of the ellipse be $\frac{x^2}{x^2}$ 2 x $\frac{1}{a^2}$ + 2 2 y $\frac{7}{b^2} = 1$, Then coordinates of foci are $(\pm ae, 0)$.

$$
\therefore \quad \text{ae} = 2 \Rightarrow \text{a} \times \frac{1}{2} = 2
$$
\n
$$
\left[\because \text{e} = \frac{1}{2}\right]
$$
\n
$$
\Rightarrow \quad \text{a} = 4
$$
\n
$$
\text{We have } b^2 = a^2 (1 - e^2)
$$
\n
$$
\therefore \quad b^2 = 16 \left(1 - \frac{1}{4}\right) = 12
$$

Thus, the equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1$.

8. (C)

Sol. SS' = 2ae, where a and e are length of semimajor axis and eccentricity respectively.

$$
\therefore \sqrt{(9-3)^2 + (12-4)^2} = 2ae
$$

 \therefore ae = 5

centre is mid-point of SS'

 \therefore centre \equiv (6, 8)

Let the equation of auxiliary circle be

 $(x-6)^2 + (y-8)^2 = a^2$

We know that the foot of the perpendicular from the focus on any tangent lies on the auxiliary circle

$$
\therefore (1, -4) \text{ lies on auxiliary circle}
$$

i.e.
$$
(1-6)^2 + (-4-8)^2 = a^2 \Rightarrow a = 13
$$

$$
\therefore \qquad ae = 5 \Rightarrow \qquad e = 5/13 \text{ Ans.}
$$

9. (C)

Sol. Put y = x k in $x^2 + y^2 = k^2$, we get

$$
x2 + \frac{k2}{x2} = k2 \implies x4 - k2x2 + k2 = 0
$$

$$
\therefore \qquad x2 = \frac{k2 \pm \sqrt{k4 - 4k2}}{2}
$$

For no intersection $k2(k2 - 4) < 0 (k \neq 0)$

: $k \in (-2, 2) - \{0\}$ Hence integral values of k are $\{-1, 1\}$]

10. (A)

Sol. Chord of the hypererbola $x^2 - y^2 = a^2$ with middle point (h, k), is hx – ky = h² – k²

$$
\Rightarrow y = \frac{h}{k}x + \frac{k^2 - h^2}{k}
$$
(1)
\n
$$
\left(m = \frac{h}{k}; c = \frac{k^2 - h^2}{k}\right)
$$

\nAs (1) touches $y^2 = 4ax$ condition of $\tan(\theta)$

 $A5(1)$ 4ax, condition of tangency gives

$$
c = \frac{a}{m} \implies \frac{k^2 - h^2}{k} = \frac{ak}{h}
$$

\n
$$
\implies x (y^2 - x^2) = 3y^2 \implies x^3 = y^2(x - 3) \text{ Ans.}
$$

- **11.** (A)
- **Sol.** Any tangent to given hypererbola, is

1 1 y · tan 4 $\frac{x \cdot 2 \sec \theta}{1} - \frac{y \cdot \tan \theta}{1} =$(1) Let (x_1, y_1) be the middle point of the chord of ellipse.

.. Its equation is
$$
\frac{xx_1}{4} + \frac{yy_1}{1} = \frac{x_1^2}{4} + \frac{y_1^2}{1}
$$

\n........(2)
\nAs (1) and (2) are identical, so
\n
$$
\frac{2\sec\theta}{x_1} = \frac{-\tan\theta}{y_1} = \frac{1}{\frac{x_1^2}{4} + \frac{y_1^2}{1}} \implies \sec \theta
$$
\n
$$
= \frac{2x_1}{x_1^2 + 4y_1^2} \text{ and } \tan \theta = \frac{-4y_1}{x_1^2 + 4y_1^2}
$$
\nAs, $\sec^2\theta - \tan^2\theta = 1$,
\nso $\frac{4x_1^2}{(x_1^2 + 4y_1^2)^2} - \frac{16y_1^2}{(x_1^2 + 4y_1^2)^2} = 1$
\n \implies Locus is $(x^2 + 4y^2)^2 = 4(x^2 - 4y^2)$.

Ans.]

12. (A)

Since L is the tangent to the hyperbola, we know that its slope is given by

$$
m = \frac{dy}{dx} = \frac{-6}{x^2}
$$
 at x = 3, that is m = $\frac{-2}{3}$.
An Equation for this line is y – 2 = $\frac{-2}{3}$ (x – 3).

From this equation we get that $B = 4$ and $A = 6$ which implies that the area is 12.]

13. (C)

Sol.
$$
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
$$
 and $x^2 = cy$
\n $(2\sqrt{2}, 4)$ satisfy both curves
\n $\frac{8}{a^2} - \frac{16}{b^2} = 1$, $8 = c.4 \implies c = 2$
\n $\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0$

$$
y' \Big|_{(2\sqrt{2}, 4)} = \frac{b^2}{a^2} \cdot \frac{2\sqrt{2}}{4} = \frac{b^2}{\sqrt{2a^2}}
$$

$$
\Rightarrow \frac{b^2}{\sqrt{2a^2}} = 2\sqrt{2} \Rightarrow b^2 = 4a^2
$$

$$
2x = 2y' \Rightarrow \frac{dy}{dx} \Big|_{(2\sqrt{2}, 4)} = 2\sqrt{2}
$$

$$
\therefore \frac{8}{a^2} - \frac{16}{4a^2} = 1 \Rightarrow a^2 = 4, \quad b^2 = 16
$$

$$
a^2 + b^2 + c = 16 + 14 + 2 = 22. \text{ Ans.}
$$

$$
14. \hspace{20pt} (D)
$$

Sol. 2ae = SS'

 \therefore ae = $\sqrt{10}$ …… (1) and product of distance from focus on y-axis gives b^2 $\ddot{\cdot}$ $2 = 8$ …… (2)

$$
\therefore
$$
 a² = 2, [\because b² + a² = a²e²]

$$
\therefore
$$
 Equation of hyperbola is

$$
(2, 4)S'
$$
\n
$$
y = x + 14
$$
\n
$$
S(4, 6)
$$
\n
$$
3x + y = 8
$$
\n
$$
y = 8
$$

$$
\frac{p_1^2}{a^2} - \frac{p_2^2}{b^2} = 1
$$
\n
$$
\Rightarrow \frac{(3x + y - 8)^2}{(\sqrt{10})^2 \cdot 2} - \frac{(x - 3y + 14)^2}{(\sqrt{10})^2 \cdot 8} = 1
$$
\ni.e.
$$
\frac{(3x + y - 8)^2}{20} - \frac{(x - 3y + 14)^2}{80} =
$$
\nAns.

15. (C)

Sol. solving
$$
x^2 - 9 = kx^2
$$

 $x^2(k-1) + 0.x + 9 = 0$

$$
x_1 + x_2 = 0 \& x_1 x_2 = \frac{9}{k - 1}
$$

now,

$$
|x_1 - x_2| = 10
$$

$$
= \sqrt{(x_1 + x_2)^2 - 4x_1 x_2}
$$

$$
\frac{1}{(x_1, y_1)A} \times B(x_2, y_2)}
$$

100 = $\frac{36}{1-k}$
100 - 100k = 36 \Rightarrow k = $\frac{64}{100} = \frac{16}{25}$ Ans

16. (C)

Sol.
$$
SP_1 = a(1 + t_1^2);
$$
 $SP_2 = a(1 + t_2^2)$

also
$$
t_1t_2 = -1
$$

$$
\frac{1}{SP_1} = \frac{1}{a(1+t^2)} \quad \frac{1}{SP_2} = \frac{t^2}{a(1+t^2)}
$$
\n
$$
\frac{1}{(1)^{1/2}x + at_1^2}
$$
\n
$$
\frac{1}{(1)^
$$

17. (C)

Sol. $\vec{V} = (T^2 - 1)\hat{i} + 2T\hat{j}$ \overline{a}

 $\vec{n} = \hat{j} - \hat{i}$

projection of V \overline{a} on \vec{n}

$$
y = \frac{\vec{V} \cdot \vec{n}}{|\vec{n}|} = \frac{(1 - T^2) + 2T}{\sqrt{2}}
$$

= 1

$$
\sqrt{2} y = 1 - T^2 + 2T; \quad \sqrt{2} \frac{dy}{dt}
$$

\n
$$
= -2T \frac{dT}{dt} + 2 \frac{dT}{dt}
$$

\nGiven $\frac{dx}{dt} = 4$; but $x = T^2$;
\n $\frac{dx}{dt} = 2T \frac{dT}{dt}$
\nwhen P(4, 4) then T = 2
\n⇒ $4 = 2 \cdot 2 \frac{dT}{dt}$; $\frac{dT}{dt} = 1$
\n $\therefore \quad \sqrt{2} \frac{dy}{dt} = -4 + 2 = -2$
\n⇒ $\frac{dy}{dt} = -\sqrt{2}$
\n18. (C)
\nSoI. $A = \frac{(y_1^2 - 4ax_1)^{3/2}}{2a}$; $x_1 = 4$; $y_1 = 6$; a = 2]
\n19. (B)
\nSoI. $T : ty = x + t^2$, $tan\theta = \frac{1}{t}$
\n $A = \frac{1}{2}(AN)(PN) = \frac{1}{2}(2t^2)(2t)$
\n $A = 2t^3 = 2(t^2)^{3/2}$
\ni.e. $t^2 \in [1,4]$ & A_{max} occurs when $t^2 = 4$ ⇒ A_{max} = 16]
\n20. (A)
\n $x^2 = y + 2$; $y^2 + y + 2 = 8$
\n $y^2 + y - 6 = 0 \Rightarrow y^2 + 3y - 2y - 6 = 0$
\n $\Rightarrow (y + 3) (y - 2) = 0 \Rightarrow y = 2$ or $y = -3$
\n(rejected)

21. 50
\n**Sol.** Image of A(h, 0) in the line mirror mx-y = 0
\n
$$
\frac{x-h}{m} = \frac{y-0}{-1} = -2\left(\frac{mh}{m^2 + 1}\right)
$$
\n
$$
x = \frac{h(1-m^2)}{1+m^2}, y = \frac{2mh}{m^2 + 1}
$$
\n
$$
y = mx
$$
\n
$$

$$

21. 50

If $y = 2$; $x = 2$ or -2

 \Rightarrow Area of $\triangle ABC = \frac{12}{2}$

 \therefore B (2, 2); C = (-2, 2) and A (0, -2)

 4×4

= 8. **Ans.**]

Sol. Let $x-3=X$ and $y+4=Y$ hence the equation of the ellipse is

$$
\frac{X^2}{16} + \frac{Y^2}{18} = 1
$$

49 16 equation of a parabola with vertex on $A(0, -7)$ can be taken as

It passes through (4, 0)

$$
\therefore \qquad 16 = 7\lambda \Rightarrow \qquad \lambda = \frac{16}{7}
$$

 $\lambda = \frac{16}{7}$ Hence the equation of the parabola is new coordinate system is $7X^2 = 16(Y + 7)$

put $X = x - 3$ and $Y = y + 4$ $7(x-3)^2 = 16(y + 11)$

..
$$
y = \frac{7}{16}(x-3)^2 - 11
$$
 or 16y

 $= 7(x-3)^2 - 176$ compare it with $16y = a(x - h)^2 - k$ $a + h + k = 7 + 3 + 176 = 186$ Ans.]

23. 8

Sol. Area of (
$$
\Delta
$$
PTS) × Area (Δ PTS')

24. 10
\n**Sol.** Let E:
$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
$$
 and H: $\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$
\n $\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4}$; $e_E^2 = 1 - \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = \frac{3}{4}$
\nSo, $a^2 = \frac{28}{3}$ and $b^2 = 7$
\n $\Rightarrow E : \frac{x^2}{28} + \frac{y^2}{7} = 1$

Now, slope of tangent at M (2, 2) on ellipse

$$
=\frac{-3}{4}
$$

 $B²$

4

So, slope of tangent at M (2, 2) on hyperbola

$$
\Rightarrow \frac{2}{A^2} = \frac{1}{3}
$$

As, $e_h^2 = 1 + \frac{B^2}{A^2} \Rightarrow e_h^2 = 1 + \frac{4}{3} = \frac{7}{3}$
So, $e_h = \sqrt{\frac{7}{3}}$.

25. 6

Sol. C₁:
$$
\frac{(x-3)^2}{9} + \frac{(y-2)^2}{4} = 1
$$

A₁ \equiv (6, 2) and A₂ \equiv (0, 2)

 $|PA_1 - PA_2| = 3\sqrt{2}$.

Clearly, locus of P is a hyperbola whose $A_1A_2 =$ 2ae = 6 foci are A_1 and A_2 and 2a = $\sqrt[3]{2}$.

e =
$$
\sqrt{2}
$$

\n \therefore Locus of P is a rectangular hyperbola
\na = b = $\frac{3}{\sqrt{2}}$.
\nEquation of conic C₂ is $(x - 3)^2 - (y - 2)^2 = \frac{9}{2}$.

n = 8 **Ans.**]

26. 2

Sol.

The equation of tangent at $P(x, y)$ is $-\frac{yy_1}{1^2} = 1$ $\mathbf{X} \mathbf{X}_1$

$$
\frac{a^2}{a^2} - \frac{1}{b^2} = 1
$$

It passes through $(0, -b)$, so $\frac{0 + b}{b}$ $\frac{y_1}{1}$ = 1

$$
\Rightarrow y_1 = b
$$

Also, equation of normal at P(x₁, y) is

$$
\frac{a^2x}{x_1}+\frac{b^2y}{y_1}=\text{a}^2\text{e}^2
$$

It passes through
$$
(2\sqrt{2}a, 0)
$$
, so
\n
$$
\frac{a^2(2\sqrt{2}a)}{x_1} = a^2e^2
$$
\n
$$
\Rightarrow \qquad x_1 = \frac{2\sqrt{2}a}{e^2}
$$
\nSo, $P\left(x_1 = \frac{2\sqrt{2}a}{e^2}, y_1 = b\right)$
\nAs $P(x_1, y_1)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$
\n $= 1$, so $\frac{8a^2}{e^4a^2} - \frac{b^2}{b^2} = 1$
\n $\Rightarrow \qquad \frac{8}{e^4} = 2 \Rightarrow e^4 = 4 \Rightarrow e^2 = 2$

Point on the hyperbola from where two perpendicular tangents are drawn also lies on the directrix of the parabola

$$
\therefore x = -2, \qquad \frac{4}{1} - \frac{y^2}{4} = 1 \implies y = \pm 2\sqrt{3}
$$

\n
$$
(-2, \pm 2\sqrt{3})
$$

\nRequired area = $\frac{S_1^{3/2}}{2|a|} = \frac{(12 - 8(-2))^{3/2}}{2 \cdot 2}$
\n
$$
= \frac{28 \cdot 2\sqrt{7}}{4} = 14\sqrt{7} \text{ Ans.}
$$

28. 23

Sol. $(y-5)^2 = 8(x-1)$ Focus of the parabola is (3, 5) Equation of tangent to the $x^2 + y^2 = 9$, from the point (3, 5) $y - 5 = m(x - 3)$ $mx - y + 5 - 3m = 0$ Applying $p = r$ $1 + m^2$ $5 - 3m$ $^{+}$ \overline{a} $= 3 \implies m = \frac{6}{15}$ 8 or ∞ $\ddot{\theta}$ α $(3, 5)$

Ans.]

7

29. Sol.

$$
\therefore \tan \alpha = \frac{8}{15}
$$

\n
$$
\Rightarrow \theta = \frac{\pi}{2} - \alpha = \frac{\pi}{2} - \tan^{-1} \frac{8}{15} = \cot^{-1} \left(\frac{8}{15}\right) = \tan^{-1} \left(\frac{15}{8}\right)
$$

\n
$$
\therefore \text{ a + b = 15 + 8 = 23 \text{ Ans. } 1 \qquad \text{30. } \text{Sol. }
$$

\n10
\nParabola : $(y - 1)^2 = 4(x - 4)$, $\lambda = 4$
\ntangent to parabola is $y - 1 = m(x - 4) + \frac{1}{m}$
\nit passes through $(8, 5) \Rightarrow 4 = 4m + \frac{1}{m}$
\nHence, $m = \frac{1}{2}$
\n
$$
\therefore \text{ equation of tangent is } y = \frac{x}{2} + 1 = mx + c
$$

\nHence, $c = 1$

Now, $y = \frac{1}{2}$ x + 1 is tangent to the circle $x^2 + y^2$ $= 5r²$. \Rightarrow $\sqrt{5}$ 2 $=$ $\sqrt{5}$ r \Rightarrow r = 5 2 \therefore 25r² + λ + 2m + c = 4 + 4 + 1 + 1 = 10. **Ans.**] **30.** 6 **Sol.** Let the equation parabola be $(y - \alpha)^2 = 4\beta(x - \gamma)$ Equation of tangent is $y - \alpha = \frac{1}{b}$ $-\mathbf{a}$ $(x - \gamma)$ – a βb Comparing with $ax + by = 1$, we get $\gamma a^2 - \beta b^2 + \alpha ab - a = 0$ $\Rightarrow \frac{1}{2}$ Y $=\frac{1}{3}$ β $=\frac{1}{4}$ α $= 1$ Hence, equation of parabola is $(y-4)^2 = 12(x-2)$]

8