JEE MAIN ANSWER KEY & SOLUTIONS

SUBJECT :- MATHEMATICS CLASS :- 11 th CHAPTER :- CONIC SECTION										PAPER CODE :- CWT-10				
	ANSWER KEY													
1. 8. 15. 22. 29.	(C) (C) (C) 186 10	2. 9. 16. 23. 30.	(B) (C) (C) 8 6	3. 10. 17. 24.	(B) (A) (C) 10	4. 11. 18. 25.	(A) (A) (C) 6	5. 12. 19. 26.	(C) (A) (B) 2	6. 13. 20. 27.	(A) (C) (A) 14	7. 14. 21. 28.	(B) (D) 50 23	
						SOLU	JTIONS							
1.	(C)						2.	(B)					2	
Sol.	Equation of normal $\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 e^2$ put $y = 0$ $x = a e^2 \cos \theta$ \Rightarrow N (a e ² cos θ , 0)							The equation of the normal to the ellipse $\frac{x^2}{a^2}$ + $\frac{y^2}{b^2}$ = 1 at the point P(a cos θ ,b cos θ) is ax sec θ – by cosec θ = $a^2 - b^2$						
	now		y_{1}	$(a \cos p)$ r_1 n s	θ , b sin θ) r x		Given, ellipse equation as $\frac{x^2}{25} + \frac{y^2}{9} = 1$ Length of major axis, a = 5 & length of minor axis, b = 3 \therefore The required equation of normal is 5x sec θ - 3ycosec θ = 25 - 9 \Rightarrow 5x sec θ - 3y cosec θ = 16(1) Given normal equation $5x - 3y - = 8\sqrt{2}$							
	sin ² A	(111)	- (a ci	550 – a	e cos 0)		Multiplying both sides with $\sqrt{2}$							
	$= a^{2} \cos^{2}\theta (1 - e^{2})^{2} + b^{2} \sin^{2}\theta$ $= a^{2} \cos^{2}\theta \cdot \frac{b^{4}}{a^{4}} + b^{2} \sin^{2}\theta$ $= \frac{b^{4} \cos^{2}\theta + a^{2}b^{2} \sin^{2}\theta}{a^{2}}$							$5\sqrt{2}x$ Comp sec θ : $\cos\theta$: $\theta = \frac{\pi}{4}$	$- 3\sqrt{2}y =$ aring equivations equivations for a second strain of the se	= 16 uation (1	.(2)) & (2)			
	$P = \frac{b^2}{a^2} [a^2 \sin^2\theta + b^2 \cos^2\theta] \dots(1)$ Also $(SP) \cdot (S_1P) = rr_1 = e(a/e - a\cos\theta). e(a/e + a\cos\theta)$ $= (a - ea\cos\theta)(a + ae\cos\theta) = a^2 - a^2e^2\cos^2\theta$ $= a^2 - (a^2 - b^2)\cos^2\theta \implies rr_1 = a^2\sin^2\theta + b^2$ $\cos^2\theta \dots(2)$ From (1) and (2) $I = \frac{b}{a}\sqrt{rr_1}$ Note: For objective take point P as (0, b) or						3. Sol.	(B) The equation of the tangent is $\frac{x}{a} \cdot \left(\frac{1}{2}\right) + \frac{y}{b} \left(\frac{\sqrt{3}}{2}\right) = 1$ (i) Auxiliary circle is $x^2 + y^2 = a^2$ (ii) C is the centre. Combined equation of CL, CM is obtained by homgenising (ii) with (i), i.e., $x^2 + y^2 - a^2 \left(\frac{x}{2a} + \frac{\sqrt{3}y}{2b}\right)^2 = 0$ Since (I CM = 00°						
	take a	= b]		- 1 11		.,		Since	∠LCM =	= 90°				

Hence
$$e = \frac{2}{\sqrt{7}}$$
 Ans.]

Sol. Equation of tangent at M $\left(\sqrt{3}, \frac{1}{2}\right)$ is

 $\sqrt{3} x + 2y = 4$

Also, distance of PQ from (0, 0) = $\frac{4}{\sqrt{7}}$

Now, PQ = 2
$$\sqrt{5 - \frac{16}{7}} = 2\sqrt{\frac{19}{7}}$$

$$\therefore \text{ Area of } (\Delta \text{OPQ}) = \frac{1}{2} \times \frac{4}{\sqrt{7}} \times 2\sqrt{\frac{19}{7}}$$

$$=\frac{4\sqrt{19}}{7}$$
 . Ans.]

5.

(C)

Sol. Equation of tangent with slope =
$$\frac{-3}{4}$$
, is

$$y = \frac{-3}{4}x + C$$

Now,
$$C = \sqrt{32 \times \left(\frac{-3}{4}\right)^2 + 18} = \sqrt{18 + 18}$$

= 6 (Using condition of tangency)

$$y = \frac{-3}{4}x + 6 \implies 3x + 4y = 24$$

It meets the coordinate axes in A and B. So A(8, 0) and B(0, 6).

Hence, required area of
$$\triangle AOB = \frac{1}{2}(8)(6)$$

= 24. Ans.]

...

6. (A)

Sol. Let P (x, y) be any point on the ellipse whose focus is S (-1,1) and the directrix is x - y + 3 = 0.

PM is perpendicular from P (x, y) on the directrix x -y + 3 = 0. Then by definition SP = ePM $\Rightarrow (SP)^2 = e^2 (PM)^2$ $\Rightarrow (x + 1)^2 + (y - 1)^2 = \frac{1}{4} \left\{ \frac{x - y + 3}{\sqrt{2}} \right\}^2$ $\Rightarrow 8 (x^2 + y^2 + 2x - 2y + 2)$ $= x^2 + y^2 + 9 - 2xy + 6x - 6y$ $\Rightarrow 7x^2 + 7y^2 + 2xy + 10x - 10y + 7 = 0$

which is the required equation of the ellipse.

7. (B)

Sol. Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, Then coordinates of foci are (± ae, 0).

$$\therefore \qquad ae = 2 \implies a \times \frac{1}{2} = 2$$

$$\left[\because e = \frac{1}{2} \right]$$

$$\implies \qquad a = 4$$
We have $b^2 = a^2 (1 - e^2)$

$$\therefore \qquad b^2 = 16 \left(1 - \frac{1}{4} \right) = 12$$

Thus, the equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1$.

8. (C)

Sol. SS' = 2ae, where a and e are length of semimajor axis and eccentricity respectively.

$$\therefore \qquad \sqrt{(9-3)^2 + (12-4)^2} = 2ae$$

... ae = 5

.... centre is mid-point of SS'

... centre \equiv (6, 8)

Let the equation of auxiliary circle be

 $(x-6)^2 + (y-8)^2 = a^2$ We know that the foot of the perpendicular from the focus on any tangent lies on the auxiliary

circle ... (1, -4) lies on auxiliary circle $(1-6)^2 + (-4-8)^2 = a^2 \implies a = 13$ i.e.

$$\therefore$$
 ae = 5 \Rightarrow e = 5/13 Ans.]

Put $y = \frac{k}{x}$ Sol.

in
$$x^2 + y^2 = k^2$$
, we get

$$x^{2} + \frac{k^{2}}{x^{2}} = k^{2} \implies x^{4} - k^{2}x^{2} + k^{2} = 0$$

$$\therefore \qquad x^{2} = \frac{k^{2} \pm \sqrt{k^{4} - 4k^{2}}}{2}$$

For no intersection
$$k^{2}(k^{2} - 4) < 0 \ (k \neq 0)$$

... $k \in (-2, 2) - \{0\}$ Hence integral values of k are {-1, 1}]

10. (A)

Sol. Chord of the hypererbola $x^2 - y^2 = a^2$ with middle point (h, k), is $hx - ky = h^2 - k^2$

$$\Rightarrow y = \frac{h}{k}x + \frac{k^2 - h^2}{k} \qquad \dots \dots \dots (1)$$
$$\left(m = \frac{h}{k}; c = \frac{k^2 - h^2}{k}\right)$$
As (1) touches $y^2 = 4ax$ condition of tand

= 4ax, condition of tangency AS (1) LOUCHES y gives

$$c = \frac{a}{m} \Rightarrow \frac{k^2 - h^2}{k} = \frac{ak}{h}$$
$$\Rightarrow x (y^2 - x^2) = 3y^2 \Rightarrow x^3 = y^2(x - 3) \text{ Ans.}]$$

11. (A)

Sol. Any tangent to given hypererbola, is

> Let (x_1, y_1) be the middle point of the chord of ellipse.

Its equation is $\frac{xx_1}{4} + \frac{yy_1}{1} = \frac{x_1^2}{4} + \frac{y_1^2}{1}$ Ŀ.(2) As (1) and (2) are identical, so $\frac{2 \sec \theta}{x_1} = \frac{-\tan \theta}{y_1} = \frac{1}{\frac{x_1^2}{x_1} + \frac{y_1^2}{x_1}} \implies \sec \theta$ $= \frac{2x_1}{x_1^2 + 4y_1^2} \text{ and } \tan \theta = \frac{-4y_1}{x_1^2 + 4y_1^2}$ As, $\sec^2\theta - \tan^2\theta = 1$, so $\frac{4x_1^2}{(x_1^2 + 4y_1^2)^2} - \frac{16y_1^2}{(x_1^2 + 4y_1^2)^2} = 1$ Locus is $(x^2 + 4y^2)^2 = 4(x^2 - 4y^2)$. \Rightarrow

Ans.]

(A) Sol.

12.

Since L is the tangent to the hyperbola, we know that its slope is given by

$$m = \frac{dy}{dx} = \frac{-6}{x^2} \text{ at } x = 3 \text{, that is } m = \frac{-2}{3}.$$

An Equation for this line is $y - 2 = \frac{-2}{3} (x - 3).$

From this equation we get that B = 4 and A = 6 which implies that the area is 12.]

13. (C)

Sol.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $x^2 = cy$
 $(2\sqrt{2}, 4)$ satisfy both curves
 $\frac{8}{a^2} - \frac{16}{b^2} = 1$, $8 = c.4 \implies c = 2$
 $\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0$

$$y'|_{(2\sqrt{2}, 4)} = \frac{b^2}{a^2} \cdot \frac{2\sqrt{2}}{4} = \frac{b^2}{\sqrt{2}a^2}$$

$$\left. \right\} \Rightarrow \frac{b^2}{\sqrt{2}a^2} = 2\sqrt{2} \Rightarrow b^2 = 4a^2$$

$$2x = 2y' \Rightarrow \frac{dy}{dx}\Big|_{(2\sqrt{2}, 4)} = 2\sqrt{2}$$

$$\therefore \frac{8}{a^2} - \frac{16}{4a^2} = 1 \Rightarrow a^2 = 4, \quad b^2 = 16$$

$$a^2 + b^2 + c = 16 + 14 + 2 = 22. \text{ Ans.}$$

14.

(D) 2ae = SS' Sol.

> : ae = $\sqrt{10}$ (1) and product of distance from focus on y-axis gives b² *.*.. $b^2 = 8$ (2)

:.
$$a^2 = 2$$
, [:: $b^2 + a^2 = a^2e^2$]

... Equation of hyperbola is

$$(-2, 4)S'$$

 p_1
 p_2
 p_2
 y_2
 $y_3y = x + 14$
 y_4
 y_5
 y_5

$$\frac{p_1^2}{a^2} - \frac{p_2^2}{b^2} = 1$$

$$\Rightarrow \frac{(3x + y - 8)^2}{(\sqrt{10})^2 \cdot 2} - \frac{(x - 3y + 14)^2}{(\sqrt{10})^2 \cdot 8} = 1$$

i.e. $\frac{(3x + y - 8)^2}{20} - \frac{(x - 3y + 14)^2}{80} = -1$
Ans.]

15. Sol.

(C) solving $x^2 - 9 = kx^2$ $x^2(k - 1) + 0.x + 9 = 0$

$$x_{1} + x_{2} = 0 \quad \& x_{1} x_{2} = \frac{9}{k-1}$$

now, $|x_{1} - x_{2}| = 10$
 $= \sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}}$

16. (C)

Sol.
$$SP_1 = a(1 + t_1^2);$$
 $SP_2 = a(1 + t_2^2)$

also
$$t_1 t_2 = -1$$

$$\frac{1}{SP_{1}} = \frac{1}{a(1+t^{2})} ; \frac{1}{SP_{2}} = \frac{t^{2}}{a(1+t^{2})}$$

$$\downarrow^{t_{1}y=x+at_{1}^{2}}$$

$$\downarrow^{t_{1}y=x+at_{1}^{2}$$

17. (C)

 $\vec{\mathrm{V}} = (\mathrm{T}^2 - 1)\hat{\mathrm{i}} + 2\mathrm{T}\hat{\mathrm{j}}$ Sol.

 $\vec{n} = \hat{j} - \hat{i}$

projection of $\,\vec{V}\,$ on $\,\vec{n}\,$

y =
$$\frac{\vec{V} \cdot \vec{n}}{|\vec{n}|} = \frac{(1 - T^2) + 2T}{\sqrt{2}}$$

$$\sqrt{2} y = 1 - T^{2} + 2T ; \sqrt{2} \frac{dy}{dt}$$

$$= -2T \frac{dT}{dt} + 2 \frac{dT}{dt}$$
Given $\frac{dx}{dt} = 4;$ but $x = T^{2};$
 $\frac{dx}{dt} = 2T \frac{dT}{dt}$
when P(4, 4) then T = 2
$$\Rightarrow 4 = 2 \cdot 2 \frac{dT}{dt}; \frac{dT}{dt} = 1$$

$$\therefore \sqrt{2} \frac{dy}{dt} = -4 + 2 = -2$$

$$\Rightarrow \frac{dy}{dt} = -\sqrt{2} \quad 1$$
18. (C)
Sol. $A = \frac{(y_{1}^{2} - 4ax_{1})^{3/2}}{2a}; x_{1} = 4; y_{1} = 6; a = 2]$
19. (B)
Sol. T: ty = x + t^{2}, tan \theta = $\frac{1}{t}$

$$A = \frac{1}{2} (AN) (PN) = \frac{1}{2} (2t^{2}) (2t)$$

$$A = 2t^{3} = 2(t^{2})^{3/2}$$
i.e. $t^{2} \in [1,4]$ & A_{max} occurs when $t^{2} = 4 \Rightarrow A_{max} = 16]$
20. (A)
Sol. (A)
Sol.

 \Rightarrow Area of $\triangle ABC = \frac{4 \times 4}{2} = 8$. **Ans.**]

50
Image of A(h, 0) in the line mirror mx - y = 0

$$\frac{x - h}{m} = \frac{y - 0}{-1} = -2\left(\frac{mh}{m^{2} + 1}\right)$$

$$x = \frac{h(1 - m^{2})}{1 + m^{2}}, y = \frac{2mh}{m^{2} + 1}$$

$$\int C = \left(\frac{h(1 - m^{2})}{1 + m^{2}}, \frac{2mh}{m^{2} + 1}\right)$$
Similarly $D = \left(\frac{-h(1 - m^{2})}{1 + m^{2}}, \frac{-2mh}{m^{2} + 1}\right)$

$$AC = \sqrt{\left(h - \frac{h(1 - m^{2})}{1 + m^{2}}\right)^{2} + \frac{4m^{2}h^{2}}{(1 + m^{2})^{2}}}$$

$$= \sqrt{\frac{4m^{4}h^{2}}{(1 + m^{2})^{2}} + \frac{4m^{2}h^{2}}{(1 + m^{2})^{2}}} = \frac{2mh\sqrt{1 + m^{2}}}{(1 + m^{2})^{2}}$$

$$AD = \sqrt{\left(h + \frac{h(1 - m^{2})}{1 + m^{2}}\right)^{2} + \frac{4m^{2}h^{2}}{(1 + m^{2})^{2}}}$$

$$= \sqrt{\frac{4h^{2}}{(1 + m^{2})^{2}} + \frac{4m^{2}h^{2}}{(1 + m^{2})^{2}}}$$

$$= \frac{2h}{(1 + m^{2})}\sqrt{1 + m^{2}}$$

$$\therefore Area = AC \cdot AD = \frac{4mh^{2}(1 + m^{2})}{(1 + m^{2})^{2}}$$

$$= \frac{4h^{2}}{m + \frac{1}{m}}$$

$$Areal_{max} = \frac{4 \times 25}{2} = 50$$
 Ans.]

21. Sol.

PRERNA EDUCATION

Sol. Let x - 3 = Xand y + 4 = Yhence the equation of the ellipse is

$$\frac{X^2}{X^2} + \frac{Y^2}{Y^2} = 1$$

16 49 equation of a parabola with vertex on A(0, -7)can be taken as

It passes through (4, 0)

 $\lambda = \frac{16}{7}$ Hence the equation of the parabola is new coordinate system is $7X^2 = 16(Y + 7)$

X = x - 3put

÷.

8

$$7(x-3)^{2} = 16(y + 11)$$

y = $\frac{7}{16}(x-3)^{2} - 11$ or 1 6 y

and

Y = y + 4

 $= 7(x-3)^2 - 176$ compare it with $16y = a(x - h)^2 - k$ a + h + k = 7 + 3 + 176 = 186 Ans.]

23.

Sol. Area of
$$(\Delta PTS) \times Area (\Delta PTS')$$

]

24. 10
Sol. Let
$$E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 and $H: \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$
 $\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4}; e_E^2 = 1 - \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = \frac{3}{4}$
So, $a^2 = \frac{28}{3}$ and $b^2 = 7$
 $\Rightarrow E: \frac{x^2}{28} + \frac{y^2}{7} = 1$

Now, slope of tangent at M (2, 2) on ellipse

$$=\frac{-3}{4}$$

 \mathbf{B}^2

4

So, slope of tangent at M (2, 2) on hyperbola

$$\Rightarrow A^{2} = 3$$
As, $e_{h}^{2} = 1 + \frac{B^{2}}{A^{2}} \Rightarrow e_{h}^{2} = 1 + \frac{4}{3} = \frac{7}{3}$
So, $e_{h} = \sqrt{\frac{7}{3}}$.

Sol.
$$C_1: \frac{(x-3)^2}{9} + \frac{(y-2)^2}{4} = 1$$

 $A_1 \equiv (6, 2) \text{ and } A_2 \equiv (0, 2)$

 $\left| \mathbf{PA}_1 - \mathbf{PA}_2 \right| = 3\sqrt{2} \ .$

Clearly, locus of P is a hyperbola whose $A_1A_2 =$ 2ae = 6 foci are A_1 and A_2 and 2a = $3\sqrt{2}$.

e =
$$\sqrt{2}$$

∴ Locus of P is a rectangular hyperbola
a = b = $\frac{3}{\sqrt{2}}$.
Equation of conic C₂ is (x - 3)² - (y - 2)² = $\frac{9}{2}$.

_____ = 18

n = 8 Ans.

- **D**₁: Distance between foci of the conic is $A_1A_2 = 6$. 27.
- D_2 : A_1, A_2 are the foci of the conic C_2
 - Sol. Product of the perpendicular from A1 and

$$A_2$$
 upon its any tangent is equal to b^2 i.e., $\frac{9}{2}$.

26.

2

Sol.

The equation of tangent at P(x, y)is $\frac{xx_1}{y_1}$

$$a^2$$
 b^2

It passes through (0, –b), so $0 + \frac{y_1}{b} = 1$

$$\Rightarrow$$
 y₁ = b
Also, equation of normal at P(x₁, y) is

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2e^2$$

It passes through
$$(2\sqrt{2} a, 0)$$
, so

$$\frac{a^2(2\sqrt{2}a)}{x_1} = a^2e^2$$

$$\Rightarrow \quad x_1 = \frac{2\sqrt{2}a}{e^2}$$
So, $P\left(x_1 = \frac{2\sqrt{2}a}{e^2}, y_1 = b\right)$
As $P(x_1, y_1)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$

$$= 1, \text{ so } \frac{8a^2}{e^4a^2} - \frac{b^2}{b^2} = 1$$

$$\Rightarrow \quad \frac{8}{e^4} = 2 \Rightarrow e^4 = 4 \Rightarrow e^2 = 2$$

Point on the hyperbola from where two perpendicular tangents are drawn also lies on the directrix of the parabola

$$\therefore x = -2, \qquad \frac{4}{1} - \frac{y^2}{4} = 1 \implies y = \pm 2\sqrt{3}$$

$$\left(-2, \pm 2\sqrt{3}\right)$$
Required area = $\frac{S_1^{3/2}}{2|a|} = \frac{(12 - 8(-2))^{3/2}}{2 \cdot 2}$

$$= \frac{28 \cdot 2\sqrt{7}}{4} = 14\sqrt{7} \text{ Ans. }]$$

28.

23

Sol. $(y-5)^2 = 8(x-1)$ Focus of the parabola is (3, 5) Equation of tangent to the $x^2 + y^2 = 9$, from the point (3, 5) y - 5 = m(x - 3)mx - y + 5 - 3m = 0Applying p = r $\left|\frac{5-3m}{\sqrt{1+m^2}}\right| = 3 \implies m = \frac{8}{15} \text{ or } \infty$ (3, 5)

 \Rightarrow Ans.] 29.

Sol.

$$\therefore \tan \alpha = \frac{8}{15}$$

$$\Rightarrow \theta = \frac{\pi}{2} - \alpha = \frac{\pi}{2} - \tan^{-1}\frac{8}{15} = \cot^{-1}\left(\frac{8}{15}\right) =$$

$$\tan^{-1}\left(\frac{15}{8}\right)$$

$$\therefore a + b = 15 + 8 = 23 \text{ Ans.}] 30.$$
Solution
Parabola : $(y - 1)^2 = 4(x - 4), \lambda = 4$

$$\tan gent \text{ to parabola is } y - 1 = m(x - 4) + \frac{1}{m}$$
it passes through $(8, 5) \Rightarrow 4 = 4m + \frac{1}{m}$
Hence, $m = \frac{1}{2}$

$$\therefore \text{ equation of tangent is } y = \frac{x}{2} + 1 = mx + c$$
Hence, $c = 1$

Now, $y = \frac{x}{2} + 1$ is tangent to the circle $x^2 + y^2$ = 5r² . $\left|\frac{2}{\sqrt{5}}\right| = \sqrt{5} r \implies r = \frac{2}{5}$ \Rightarrow $25r^2 + \lambda + 2m + c = 4 + 4 + 1 + 1 = 10.$ *.*.. Ans.] 6 Let the equation parabola be $(y - \alpha)^2 = 4\beta(x - \gamma)$ Equation of tangent is $y - \alpha = \frac{-a}{b}(x - \gamma) - \frac{-a}{b}(x - \gamma)$ βb а Comparing with ax + by = 1, we get $\gamma a^2 - \beta b^2 + \alpha ab - a = 0$ $\frac{\gamma}{2} = \frac{\beta}{3} = \frac{\alpha}{4} = 1$ \Rightarrow Hence, equation of parabola is $(y-4)^2 = 12(x-2)$]

8