SUBJECT :- MATHEMATICS CLASS :- 11 th CHAPTER :- CONIC SECTION			WISETEST PAPER-10 DATE NAME			
			SECTION			
 (SECTION-A) The length of the normal (terminated by the major 6. The equation of an ellipse whose focility 						
1.	The length of the normal (terminated by the major axis) at a point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is (A) $\frac{b}{a}(r+r_1)$ (B) $\frac{b}{a} r-r_1 $		The equation of an ellipse whose focus is $(-1, -1)$ eccentricity is 1/2 and the directrix is $x - y + -1$ = 0 is. (A) $7x^2 + 7y^2 + 2xy + 10x - 10y + 7 = 0$ (B) $7x^2 + 7y^2 + 2xy - 10x - 10y + 7 = 0$ (C) $7x^2 + 7y^2 + 2xy - 10x + 10y + 7 = 0$ (D) None of these			
	(C) $\frac{b}{a}\sqrt{rr_1}$ (D) independent of r, r ₁ where r and r ₁ are the focal distances of the point.	7.	The foci of an ellipse are (±2, 0) and it eccentricity is 1/2, the equation of ellipse is. (A) $\frac{x^2}{16} + \frac{y^2}{9} = 1$ (B) $\frac{x^2}{16} + \frac{y^2}{12} = 1$			
2.	The eccentric angle of the point where the line, $again x^2$		(C) $\frac{x^2}{4} + \frac{y^2}{2} = 1$ (D) None of these			
	$5x - 3y = 8\sqrt{2}$ is a normal to the ellipse $\frac{x^2}{25}$ + $\frac{y^2}{9}$ = 1 is	8.	Let $S \equiv (3, 4)$ and $S' \equiv (9, 12)$ be two foci of a ellipse. If the coordinates of the foot of the perpendicular from focus S to a tangent of the ellipse is $(1, -4)$ then the eccentricity of the			
3.	(A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) tan ⁻¹ 2 The tangent at a point whose eccentric angle		ellipse is (A) $\frac{4}{5}$ (B) $\frac{5}{7}$ (C) $\frac{5}{13}$ (D) $\frac{7}{13}$			
	60° on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) meet the auxiliary circle at L and M. If LM subtends a right angle at the centre, then	9. M	If the circle $x^2 + y^2 = k^2$ and the rectangular hypererbola $xy = k$ have no points in common then the number of integral values of k, is (A) 0 (B) 1 (C) 2 (D) 3			
	eccentricity of the ellipse is (A) $\frac{1}{\sqrt{7}}$ (B) $\frac{2}{\sqrt{7}}$ (C) $\frac{3}{\sqrt{7}}$ (D) $\frac{1}{2}$	10.	If the chord of the hypererbola $x^2 - y^2 =$ touches the parabola $y^2 = 12x$, then the locu of the middle points of these chord is (A) $x^3 = (x - 3)y^2$ (B) $x^3 = (x + 3)y^2$ (C) $x (x^2 - y^2) = 3y$ (D) $x^3 = x - 3y^2$			
4.	Tangent drawn to an ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ at the point with eccentric angle 30° cuts the	11.	A tangent to the hypererbola $\frac{x^2}{4} - \frac{y^2}{1} =$			
	director circle of ellipse at P and Q. The area of triangle OPQ is (where O is origin) (A) $\frac{4\sqrt{19}}{7}$ (B) $\frac{2\sqrt{19}}{7}$ (C) $\frac{6\sqrt{19}}{7}$ (D) $\frac{8\sqrt{19}}{7}$		The locus of mid point of this chord is (A) $(x^2 + 4y^2)^2 = 4(x^2 - 4y^2)$ (B) $(x^2 - 4y^2) = 4(x^2 + 4y^2)$ (C) $(x^2 - 4y^2)^2 = 4(4x^2 + y^2)$ (D) $(x^2 + 4y^2)^2 = 4(4x^2 - y^2)$			
5.	Tangent to the ellipse $\frac{x^2}{32} + \frac{y^2}{18} = 1$ having slope $\frac{-3}{4}$ meet the coordinate axes in A and B. The area of $\triangle AOB$ (O is origin) equals	12.	Consider the hyperbola H given by the equati xy = 6 and the point P (3, 2) lies on H. Let L the line tangent to H at P (3, 2). If L intersect the positive x-axis at a point A and the positi y-axis at a point B, then the area of the triang Δ AOB, is			
	(A) 12 (B) 8 (C) 24 (D) 32		(A) 12 (B) 6 (C) 10 (D) 18			

13.	If the curves $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $x^2 = cy$ touch	17.	Let S be the moving on the increasing a
	each other at the point $(2\sqrt{2}, 4)$ then the value of (a ² + b ² + c) is equal to (A) 38 (B) 26 (C) 22 (D) 18		rate of increa when P is at
14.	If a hyperbola whose foci are (–2, 4) and (4, 6) touches y-axis, then equation of hyperbola is		(A) $\sqrt{2}$
	(A) $\frac{(3x+y-8)^2}{2} - \frac{(x-3y+14)^2}{8} = 1$	18.	(C) – $\sqrt{2}$
	(B) $\frac{(x-3y+14)^2}{2} - \frac{(3x+y-8)^2}{8} = 20$		From the point of the characteristic of the
	(C) $\frac{(x+3y-7)^2}{2} - \frac{(x-3y+8)^2}{8} = 1$		the chord of (A) 8 (C) 2
	(D) $\frac{(3x+y-8)^2}{1} - \frac{(x-3y+14)^2}{4} = 20$	19.	A tangent is the point 'P' [1,4]. The ma
15.	The parabola $y = x^2 - 9$ and $y = kx^2$ intersect each other at the points A and B. If the length AB is equal to 10 units then the value of k is equal to		formed by th point 'P' and (A) 8
	(A) 75 (B) $\frac{9}{25}$ (C) $\frac{16}{25}$ (D) $\frac{16}{9}$		(C) 24
16.	Two mutually perpendicular tangents of the parabola $y^2 = 4ax$ meet the axis in P ₁ and P ₂ . If S is the focus of the parabola then $1 + 1$.	20.	Point A is the equation is y intersections whose equa
	$\frac{1}{l(SP_1)} + \frac{1}{l(SP_2)}$ is equal to		quare units i (A) 8
	(A) $\frac{4}{a}$ (B) $\frac{2}{a}$ (C) $\frac{1}{a}$ (D) $\frac{1}{4a}$		(C) 12
		ION-B)	
21.	Let A and B be two points on the major axis of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, which are equidistant	23.	On an ellipse
	from the centre. If C and D are the images of		P ₁ , P ₂ , P ₃ , . at T ₁ , T ₂ , T ₃ ,
	these points in the line mirror $y = mx$, $m \neq 0$ then find the maximum area of quadrilateral ACBD.		$\sum_{i=1}^{n} \frac{\operatorname{area}(\Delta P)}{S \text{ and } S' \text{ are}}$
22.	Given the equation of the ellipse $\frac{(x-3)^2}{16}$ +	24.	Suppose an same pair of the origin ar
	$\frac{(y+4)^2}{49} = 1$, a parabola is such that its vertex is the lowest point of the ellipse and it passes		eccentricity
	through the ends of the minor axis of the ellipse. The equation of the parabola is in the form $16y =$		hyperbola is

 $a(x - h)^2 - k$. Determine the value of (a + h + k).

Let S be the focus of $y^2 = 4x$ and a point P is moving on the curve such that it's abscissa is increasing at the rate of 4 units/sec, then the rate of increase of projection of SP on x + y = 1 when P is at (4, 4) is

A) $\sqrt{2}$ (B) - 1 C) - $\sqrt{2}$ (D) - $\frac{3}{\sqrt{2}}$

- From the point (4, 6) a pair of tangent lines are drawn to the parabola, $y^2 = 8x$. The area of the triangle formed by these pair of tangent lines & the chord of contact of the point (4, 6) is : (A) 8 (B) 4 (C) 2 (D) 6
- A tangent is drawn to the parabola y² = 4x at the point 'P' whose abscissa lies in the interval [1,4]. The maximum possible area of the triangle formed by the tangent at 'P', ordinate of the point 'P' and the x-axis is equal to (A) 8 (B) 16

20. Point A is the vertex of the parabola whose equation is $y = x^2 - 2$. Points B and C are the intersections of the parabola with the circle whose equation is $x^2 + y^2 = 8$. The number of guare units in the area of $\triangle ABC$, is

23. On an ellipse $\frac{x^2}{64} + \frac{y^2}{9} = 1$, tangents drawn at P₁, P₂, P₃,, P_n intersects the major axis at T₁, T₂, T₃,, T_n respectively. If the value of $\sum_{i=1}^{n} \frac{\operatorname{area}(\Delta P_i T_i S) \cdot \operatorname{area}(\Delta P_i T_i S')}{(P_i T_i)^2} = 18$, where S and S' are foci of ellipse, then find n.

Suppose an ellipse and a hyperbola have the same pair of foci on the x-axis with centres at the origin and they intersect at M (2, 2). If the eccentricity of ellipse is $\frac{1}{2}$ and eccentricity of

hyperbola is $\sqrt{\frac{m}{n}}$ where m, n are coprime, then find the value of (m + n).

PG #2

25. Let A_1 and A_2 are the vertices of the conic C_1 : $4(x-3)^2 + 9(y-2)^2 - 36 = 0$ and a point P is moving in the plane such that $|PA_1 - PA_2| = 3\sqrt{2}$ then locus of P is

another conic C2. If

 $\begin{array}{l} \mathsf{D_1} \text{ denotes distance between foci of the conic } \mathsf{C_2}.\\ \mathsf{D_2} \text{ denotes product of the perpendiculars from the points } \mathsf{A_1}, \mathsf{A_2} \text{ upon any tangent drawn to conic } \mathsf{C_2}. \end{array}$

and D_3 denotes length of the tangent drawn from any point on auxiliary circle of conic C_1 to the auxiliary circle of the conic C_2 , then find the

value of
$$\left(\frac{D_1D_2}{D_3^2}\right)$$

26. The tangent at point P on the hyperbola

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ passes through the point (0, -b)

and the normal at point P passes through the point $(2\sqrt{2} \ a, 0)$. If e denote the eccentricity of hyperbola then find the value of e^2 .

Let $C_1 : |z-2| = \left| \frac{z+\overline{z}+4}{2} \right|$ and C_2 : $\left| |z+\sqrt{5}| - |z-\sqrt{5}| \right| = 2$ be two curves. If from a point on the curve C_2 two mutually perpendicular tangents are drawn to the curve C_1 and area of the triangle formed by pair of tangents and their corresponding chord of contact is $k\sqrt{7}$, then find k.

27.

28. If angle between two focal chords of a parabola $(y-5)^2 = 8(x-1)$ which are tangents to the circle $x^2 + y^2 = 9$ is $\tan^{-1}\left(\frac{a}{b}\right)$, where a and b relatively prime number then find the value of a + b.

- **29.** If the line y = mx + c is tangent to the circle $x^2 + y^2 = 5r^2$ and the parabola $y^2 4x 2y + 4\lambda + 1 = 0$ and point of contact of the tangent with the parabola is (8, 5), then find the value of $(25r^2 + \lambda + 2m + c)$.
- 30. If $2a^2 3b^2 + 4ab a = 0$ and a variable line ax + by = 1 always touches a parabola whose axis is parallel to x-axis then the equation of parabola is $(y-p)^2 = q(x-r)$. Find the value of (q-(p+r)).

JEE CHAPTER-WISE TESTS

