NEET : CHAPTER WISE TEST-1

SUB	JECT :- CHEMISTRY		
	SS :- 11 th		NAME
	PTER :- MOLE CONCEPT		SECTION
	(SECT	ION-A)	
1.	Centigrade and Fahrenheit scales are related as : (A) $\frac{C}{5} = \frac{F - 32}{9}$ (B) $\frac{C}{9} = \frac{F - 32}{5}$ (C) $\frac{C}{8} = \frac{F - 32}{5}$ (D) None of these	10. 11.	Which has maximum number of atoms :(A) 24 g of C (12)(B) 56 g of Fe (56)(C) 27 g of Al (27)(D) 108 g Ag (108)The total number of protons, electrons andneutrons in 12 g of ${}^{12}_{6}$ C is :
2.	Avogadro number is :		(A) 1.084×10^{25} (B) 6.022×10^{23} (C) 6.022×10^{22} (D) 18
	 (A) Number of atoms in one gram of the element (B) Number of mililitre which one mole of a gaseous substance occupies at NTP (1 atm & 0°C) (C) Number of molecules present in one gram molecular mass of a substance. (D) All are correct 	12.	A sample of aluminium has a mass of 54.0 g. What is the mass of the same number of magnesium atoms? (At. wt. AI = 27, Mg = 24) (A) 12 g (B) 24 g (C) 48 g (D) 96 g. The total number of electrons present in
3.	Molecular weight of SO_2 is (A) 64 gm (B) 64 amu (C) 32 gm (D) 32 amu		8.0 g of methane is (A) 4.8×10^{24} (B) 3.01×10^{24} (C) 4.8×10^{25} (D) 3.01×10^{23} .
4.	If the atomic mass of Sodium is 23, the number of moles in 46 g of sodium is : (A) 1 (B) 2 (C) 2.3 (D) 4.6	14.	How many moles of electron weigh one kilogram : (A) 6.023×10^{23}
5.	How many atoms are there in 100 amu of He ? (A) 25 (B) 50 (C) 75 (D) 100		(B) $\frac{1}{9.108} \times 10^{31}$ (C) $\frac{6.023}{9.108} \times 10^{54}$
6.	Number of molecules of water in a drop of water weighing 0.09 g are : (A) 3.01×10^{21} (B) 6.02×10^{21}	15.	(D) $\frac{1}{9.108 \times 6.023} \times 10^8$ 16 g of an ideal gas SO _x occupies 5.6 L. at STP. The value of x is
7.	(C) 3.01×10^{22} (D) 3.01×10^{20} The largest number of molecules is		(A) x = 3 $(B) x = 2$ $(C) x = 4$ (D) none of these
	present in 1 g of (A) CO_2 (B) H_2O (C) C_2H_5OH (D) N_2O_5 .	16.	Number of electrons in 1.8 mL of $H_2O(\ell)$ is about :(A) 6.02×10^{23} (B) 3.011×10^{23} (C) 0.6022×10^{21} (D) 60.22×10^{20}
8.	Total number of atoms in 196 amu H ₂ SO ₄ are : (A) 14 N _A (B) 14 (C) 7 N _A (D) 7	17.	If 1.5 moles of oxygen combine with Al to form Al_2O_3 , the weight of Al used in the reaction is : (A) 27 g (B) 40.5 g (C) 54g (D) 81 g
9.	One mole of P ₄ molecules contain : (A) 1 molecule (B) 4 molecules	18.	How many moles of potassium chlorate need to be heated to produce 11.2 litre oxygen at N.T.P.
	(C) $\frac{1}{4} \times 6.022 \times 10^{23}$ atoms		(A) $\frac{1}{2}$ mol (B) $\frac{1}{3}$ mol
	(D) 24.088 × 10 ²³ atoms		(C) $\frac{1}{4}$ mol (D) $\frac{2}{3}$ mol

19.	. When 100g of ethylene polymerises		
	entirely to polyethene, the weight of		
	polyethene formed as per the equation		
	$n(C_2H_4) \rightarrow (-CH_2-CH_2-)_n$ is :		
	(A) (n/2)g	(B) 100g	
	(C) (100/n)g	(D) 100ng	
20.	ς <u>Σ</u> ,		
from 2 mole zinc, 3 mole iron ar		mole iron and 5 mole	
	sulphur. (A) 2 mole	(B) 3 mole	
	(C) 4 mole	(D) 5 mole	
•			
21.	21. 500 mL of a glucose solution contains 90 of glucose. The concentration of t		
	solution is		
	(A) 0.1 M	(B) 1.0 M	
	(C) 0.2 M	(D) 2.0 M	
22.	What volume of a 0.	.8 M solution contains	
	100 milli moles of the	e solute?	
	(A) 100 mL	(B) 125 mL	
	(C) 500 mL	(D) 62.5 mL	
23.	Which of the followin	g conc <mark>entra</mark> tion factor	
	is affected by change	-	
	(A) Molarity	(B) Molality	
	(C) Mole fraction	(D) Weight fraction	
24.	•	ion o <mark>f eth</mark> anol has	
	, ,	and it is 2M. What is	
	the molality of this so (A) 1.79	(B) 2.143	
	(C) 1.951	(D) None of these.	
25.	25. If 500 ml of 1 M solution of glucose is mixed with 500 ml of 3 M solution of		
glucose final molarity of solution will be :		of solution will be :	
	(A) 1 M	(B) 0.5 M	
	(C) 2 M	(D) 1.5 M	
26.	26. The molality of the solution containing		
	20% w/w solution of		
	(A) 4.5 m (C) 0.3 m	(B) 6.25 m (D) 1 m	
	(0) 0.0 m		
27.	27. The oxidation number of Oxy		
	Na ₂ O ₂ is :		
	(A) + 1	(B) + 2	
	(C) – 2	(D) – 1	

28.	The oxidation states of Sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order : (A) $S_2O_6^{2-} < S_2O_4^2 < SO_3^{2-}$ (B) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ (C) $SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (D) $S_2O_4^2 < S_2O_6^{2-} < SO_3^{2-}$

· · Z	0	()	
(Code):			
(A)	(B)	(C)	(D)
(A) 3	4	2	1
(B) 4	3	2	1
(C) 3	4	1	2
(D) 4	3	1	2

30. If, from 10 moles NH_3 and 5 moles of H_2SO_4 , all the H-atoms are removed in order to form H_2 gas, then find the number of H_2 molecules formed.

(A) 20 N _A	(B) 10 N _A	
(C) 5 N _A	(D) N _A	

- 31. The density of liquid mercury is 13.6 g/cm³. How many moles of mercury are there in 1 litre of the metal ? (Atomic mass of Hg = 200.)
 (A) 68 mole
 (B) 69 mole
 (C) 70 mole
 (D) 71 mole
- **32.** 64 g of an organic compound has 24 g carbon and 8 g hydrogen and the rest is oxygen. The empirical formula of the compound is :

(A) 0140	(B) 0120	
(C) C ₂ H ₄ O	(D) None	

33. 25.4 g of iodine and 14.2g of chlorine are made to react completely to yield a mixture of ICI and ICI₃. Calculate the number of moles of ICI and ICI₃ formed.

- (A) 0.1 mole, 0.1 mole
- (B) 0.1 mole, 0.2 mole
- (C) 0.5 mole, 0.5 mole
- (D) 0.2 mole, 0.2 mole

34.	When a mixture of 10 mole of SO_2 , 15	41.	An element X has the following isotopic
	mole of O_2 was passed over catalyst , 8		composition : 200 _{X:90%}
	mole of SO_3 was formed. How many mole		¹⁹⁹ X : 8.0%
	of SO ₂ and O ₂ did not enter into		²⁰² X : 2.0%
	combination ?		The weighted average atomic mass of the
	(A) 2 moles of SO ₂ , 11 moles of O ₂		naturally occurring element X is closest to : (A) 199 amu (B) 200 amu
	(B) 3 moles of SO ₂ , 11.5 moles of O_2		(C) 201 amu (D) 202 amu
	(C) 2 moles of SO ₂ , 4 moles of O ₂	42.	Suppose the elements X and Y combine to
	(D) 8 moles of SO ₂ , 4 moles of O ₂		form two compounds XY_2 and X_3Y_2 .
35.	0.5 mole of H_2SO_4 is mixed with 0.2 mole		When 0.1 mole of XY_2 and XY_2 weights
	of Ca (OH) ₂ . The maximum number of		10 g and 0.05 mole of X_3Y_2 weights 9 g,
	moles of CaSO ₄ formed is		the atomic weights of X and Y are (A) 30, 20 (B) 40, 30
	(A) 0.2 (B) 0.5 (C) 0.4 (D) 1.5		(C) 60, 40 (D) 20, 30
	(SECTION-B)	43.	In which case is the number of molecules
36.	A 500 g toothpaste sample has 0.4 g fluoride concentration. The fluoride		of water maximum ?
	concentration in terms of ppm will be :		(A) 18 mL of water (B) 10^{-3} mol of water
	(A) 200 (B) 400		(C) 0.00224 L of water vapours at 1 atm
	(C) 500 (D) 800		and 273 K
37.	The volume of water that must be added		(D) 0.18 g of water
	to a mixture of 250 ml of 0.6 M HCl and 750 ml of 0.2 M HCl to obtain 0.25 M	44.	The number of moles of hydrogen
	solution of HCl is :		molecules required to produce 20 moles of
	(A) 750 ml (B) <mark>100 m</mark> l		ammonia through Haber's process is :
	(C) 200 mℓ (D) 300 mℓ		(A) 40 (B) 10 (C) 20 (D) 30
38.	Silver metal reacts with nitric acid	45.	A sample of a mixture of $CaCl_2$ and
00.	according to the equation		Na_2CO_3 weighing 4.22 g was treated to
	3Ag (s) + 4HNO ₃ (aq) \longrightarrow 3AgNO ₃		precipitate all the Ca as $CaCO_3$. This
	(aq) + NO (g) + 2H ₂ O (l)		$CaCO_3$ is heated and quantitatively
	The volume of 1.15 M HNO ₃ (aq) required		converted into 0.959 g of CaO. Calculate the percentage of $CaCl_2$ in the mixture.
	to react with 0.784 g of silver is –		(Atomic mass of Ca = 40, O = 16, C = 12)
	(A) 4.74 mL (B) 6.32 mL		and Cl = 35.5)
	(C) 8.43 mL (D) 25.3 mL		(A) 55.28 % (B) 37.3 % (C) 45.00 % (D) 49.01 %
39.	$ m H_3PO_4$ (98 g mol $^{-1}$) is 98% by mass of		Ministran of here wested in the 1
	solution. If the density is 1.8 g/ml,	46.	Mixture of two metals having mass 2 gm
	calculate the molarity.		(A = 15, B = 30) and are bivalent and
	(A) 18 (B) 20 (C) 22 (D) 24		dissolve in HCl and evolve 2.24 L H_2 at STP. what is mass of A present in
40.	The average oxidation state of Fe in		mixture?
	Fe ₃ O ₄ is:		(A) 1 gm (B) 1.5 gm
	(A) – 8/3 (B) 8/3 (C) 2 (D) 3		(C) 0.5 gm (D) 0.75 gm

PG #3

- 47. A 5.2 molal aqueous solution of methyl alcohol, CH₃OH, is supplied. What is the mole fraction of methyl alcohol in the solution?
 (A) 0.100 (B) 0.190
 (C) 0.086 (D) 0.050
- 48. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1 : 4. The ratio of number of their molecule is :
 (A) 1 : 4 (B) 7 : 32
 - (A) 1 . 4 (B) 7 . 32 (C) 1 : 8 (D) 3 : 16
- **49.** Amongst the following statements, that which was not proposed by Dalton atomic theory was :

(A) When gases combine or reproduced in a chemical reaction they do so in a simple ratio by volume provided all gases are at the same temperature & pressure.
(B) Matter consists of indivisible atoms
(C) Chemical reactions involve reorganization of atoms. These are neither created nor destroyed in a chemical reaction.
(D) All the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass.

50. According to S.I. the system, _____ was used to measure the amount of substance.
(A) mole
(B) weight machine
(C) weight
(D) mass

PE