JEE MAIN : CHAPTER WISE TEST PAPER-1							
SUBJECT :- CHEMISTRY			DATE				
CHAP	TER :- MOLE CONCEPT		SECTION				
1.	Mark the option containing temperature –independent concentration terms.(I) ppm(II) % w/w(III) Volume strength of H_2O_2 (IV) % labelling(V) % w/v(A) All except V(B) I, II and IV(C) I, II only(D) Only II	8. 9.	Volume of water which HCl to make 2 lit. of 7. (A) 1.5 lit. (C) 1 lit. The density of a pure li gm/ml. If 2 ml of liguid c	n must be added to 8M 3 % w/v HCl solution is (B) 0.5 lit. (D) 2 lit. quid (mol wt. 70) is 1.2 contain 35 drops, the no.			
2.	40 gm of a carbonate of an alkali metal or alkaline earth metal containing some inert impurities was made to react with excess HCl solution. The liberated CO_2 occupied 12.315 lit. at 1 atm & 300 K. The correct option is (A) Mass of impurity is 1 gm and metal is Be (B) Mass of impurity is 3 gm and metal is Li (C) Mass of impurity is 5 gm and metal is Be (D) Mass of impurity is 2 gm and metal is Mg	10.	of molecules in 2 ml of (A) $\frac{1.2}{(35)^2} \times N_A$ (C) $\frac{1.2}{35} \times N_A$ 1.5 gm mixture of SiO ₂ a heating leave a residue reaction responsible fo Fe O ₁ (s) \longrightarrow Fe O ₁ (s)	liquid are (B) $\frac{1}{35} \times N_A$ (D) 1.2 N _A and Fe ₂ O ₃ on very strong weighing 1.46 gm. The r loss of weight is (s) + O ₁ (q)			
3.	The percentage by mole of NO_2 in a mixture of $NO_2(g)$ and $NO(g)$ having average molecular mass 34 is : (A) 25% (B) 20% (C) 40% (D) 75%		What is the percentag original sample. (A) 80% (C) 40%	(B) 20% (D) 60%			
4.	The minimum mass of mixture of A_2 and B_4 required to produce at least 1 kg of each product is (Given At. mass of 'A' = 10; At. mass of 'B' = 120) $5A_2 + 2B_4 \longrightarrow 2AB_2 + 4A_2B$ (A) 2120 gm (B) 1060 gm (C) 560 gm (D) 1660 gm	11.	Some amount of a diac (molar mass = 58) reacts to form 12 gm of chlorop of residue produced on (A) 0.2 gm (C) 5 gm	idic organic Lewis base s with chloroplatinic acid blatinate salt. The mass heating is (B) 2 gm (D) 8 gm			
5.	The mass of CO_2 produced from 620 gm mixture of $C_2H_4O_2 & O_2$, prepared to produce maximum energy is (A) 413.33 gm (B) 593.04 gm (C) 440 gm (D) 320 gm	12.	If 0.5 M methanol under $CH_3OH \perp CH_3O^- + H^+$ is 2.5 × 10 ⁻⁴ M then ca of methanol. (A) 2.5 (B) 0.05	rgo self dissociation like & if concentration of H ⁺ alculate % dissociation (C) 0.005 (D) 5			
6.	Assuming complete precipitation of AgCl, calculate the sum of the molar concentration of all the ions if 2 lit of $2M Ag_2SO_4$ is mixed with 4 lit of 1 M NaCl solution is : (A) 4M (B) 2M (C) 3 M (D) 2.5 M	13.	Mass of 1 mole of electr of 1 electron = 9.1×10^{-8} (C) 3.27×10^{-8}	ron in amu will be (Mass) ⁻³¹ kg), $N_A = 6 \times 10^{23}$ (B) 54.6 × 10 ⁻⁵ (D) 3.27 × 10 ¹⁷			
7.	200 ml of a gaseous mixture containing CO, CO_2 and N_2 on complete combustion in just sufficient amount of O_2 showed contraction of 40 ml when the resulting gases were passed through KOH solution it reduces by 50 % then calculate the volume ratio of V_{CO_2} : V_{CO} : V_{N_2} in original mixture	14. 15.	The oxidation number of $(A) + 1$ (C) - 2 The volume of monoator torr is 44.8 mL. The nuin this volume is	of Oxygen in Na_2O_2 is : (B) + 2 (D) - 1 omic gas at 0°C and 760 mber of atoms present			
	(A) 4 : 1 : 5 (B) 2 : 3 : 5 (C) 1 : 4 : 5 (D) 1 : 3 : 5		(A) 2 × 10 ⁻³ (C) 0.002 N _A	(B) 12.046 N _A (D) None of these			

https://prernaeducation.co.in

16.	The empirical formula of a compound of molecular mass 120 is CH_2O . The molecular formula of the compound is : (A) $C_2H_4O_2$ (B) $C_4H_8O_4$ (C) C H O (D) all of theorem	19.	 I9. The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having 1000 gm of solvent. (A) 1000 g (B) 1098.6 g (C) 980.4 g (D) 1019.6 g
17. 18.	$(C) C_3 \Pi_6 O_3$ (D) an of these 500 mL of a glucose solution contains 6.02 × 10^{22} molecules. The concentration of the solution is (A) 0.1 M (B) 1.0 M (C) 0.2 M (D) 2.0 M The mole fraction of water in a solution containing	20.	20. A certain element, X reacts with sulfur to form the compound X_2S_5 . If 0.3 g of element form 3.5 g of compound what is the atomic mass of the element. (A) 3.1 g/mol
	117 g sodium chloride and 900 g of water is ?(A) 0.0632(B) 0.038(C) 0.9615(D) 1.000		(C) 65.4 g/mol (D) 7.5 g/mol
	(SECT	ION-	N-B)
21.	$2AgNO_3(aq) + Fe(s) \longrightarrow Fe(NO_3)_2(aq) + 2Ag(s)$. 100 ml solution of $AgNO_3$ was mixed with 11.2 gm Fe. The mass of the total solid at	26.	26. Vapour density of a volatile substance w.r.t. CH_4 is 4 (CH_4 = 1). Its molecular weight would be –
	the completion of reaction was found to be 35.2 gm. Calculate molarity of AgNO ₃ in the solution and the remaining mass of Fe.	27.	27. What weight of $CaCO_3$ must be decomposed to produce the sufficient quantity of carbon dioxide to convert 21.2 kg of Na_2CO_3 completely in to
22.	If the atomic mass of Sodium is 23, the number of moles in 46 g of sodium is :		NaHCO ₃ . [Atomic mass Na = 23, Ca = 40]
23.	Acid samples are prepared for analysis by using H_2SO_4 , H_3PO_4 and HNO_3 separately or as mixture. What minimum volume of 33.6 (w/v) % KOH solution (d = 1.6 gm/ml) must be added to a sample of 1.96 gm in order to ensure	28.	CaCO ₃ \longrightarrow CaO + CO ₂ Na ₂ CO ₃ + CO ₂ + H ₂ O \longrightarrow 2NaHCO ₃ 28. Calculate the amount of H ₂ which is left upreacted in the given reaction :
	case.		
24.	When 20 ml of pure acetic a_{cid} (density = 0.75		If 8 g of H ₂ is mixed with 16 g O ₂ ?
	$(\text{density} = 1\text{gm m}^{-1})$ at a certain temperature.		
	Calculate the molality of acetic acid in the final solution.	29.	29. If 500 ml of 1 M solution of glucose is mixed with 500 ml of 1 M solution of glucose final
25.	For the reaction,		molarity of solution will be :
	Initially if 1 mole of x, 3 mole of y and 4 mole of z is taken. If 1.25 mole of w is obtained then % yield of this reaction is	30.	30. What volume of water should be added to 1600 ml of 0.205 M solution so that the resulting solution becomes 0.2 M?