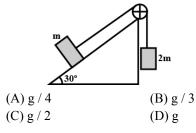
PHYSICS


(SECTION-A)

1.	The dimensions of	stress are equal to
	(A) Force	(B) Pressure
		1
	(C) Work	(D) $\overline{\text{Pressure}}$

A body starts from rest. What is the ratio of the distance travelled by the body during the 4th and 3rd second

7	5	7	3
(A) $\overline{5}$	(B) 7	(C) $\overline{3}$	(D) 7

- A cricketer can throw a ball to a maximum horizontal distance of 100 m. With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is
 (A) 100 m
 (B) 80 m
 (C) 60 m
 (D) 50 m
- 4. Two blocks of masses m and 2m are connected by light string passing over a frictionless pulley. As shown in the figure the mass m is placed on a smooth inclined plane of inclination 30° and 2m hange vertically. If the system is released, the blocks move with an acceleration equal to

5. A space craft of mass M and moving with velocity 'v' suddenly breaks in two pieces of same mass m. After the explosion one of the mass m, becomes stationary. What is the velocity of the other part craft

(A)
$$\frac{Mv}{M-m}$$
 (B) v
(C) $\frac{Mv}{m}$ (D) $\frac{M-m}{m}v$

A body of mass 4 kg moving with velocity 12 m/s collides with another body of mass 6 kg at rest. If two bodies stick together after collision, then the loss of kinetic energy of system is

-A)		
	(A) Zero	(B) 288 J
	(C) 172.8 J	(D) 144 J
7.	The center of mass of	f a system of two particles
	divides the distance b	
	(A) In inverse ratio	of square of masses of
	particles	1
		of square of masses of
	particles	- 1
	(C) In invers ratio of i	masses of particles
	• •	of square of masses of
	particles	of square of masses of
	putitoites	
8.	One circular ring and	one disc. Both are having
0.	•	radius. The ratio of their
		about the axes passing
		and perpendicular to their
	•	and perpendicular to their
	planes, will be (A) 1 : 1	(D) $2 \cdot 1$
	(A) 1 : 1	(B) 2 : 1 (D) 4 1
	(C) 1 : 2	(D) 4 : 1
9.	The acceleration of a	body due to the attraction
).		-
	of the earth (radius I	R) at a distance 2R from

- The acceleration of a body due to the attraction of the earth (radius R) at a distance 2R from the surface of the earth is (g = acceleration due to gravity at the surface of the earth) (A) g/9 (B) g/3 (C) g/4 (D) g
- **10.** For a satellite moving in an orbit around the earth, the ratio kinetic energy to potential energy is

1

(A) 2 (B)
$$\frac{1}{2}$$

(C) $\frac{1}{\sqrt{2}}$ (D) $\sqrt{2}$

11. What is the minimum energy required to launch a satellite of mass m from the surface of the earth of mass M and radius R in a circular orbit at an altitude of 2R

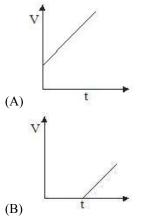
$$(A) \frac{5GmM}{6R}$$
(B)
$$\frac{2GmM}{3R}$$
(C) $\frac{GmM}{2R}$ (D) $\frac{GmM}{3R}$

12. The Young's modulus of the naterial of a wire is equal to the

(A) Stress required to increase the length four times
(B) Stress required to produce unit strain
(C) Strain produced in it
(D) Half the strain produced in it

13. Soap bubbles can be formed floating in air by blowing soap solution in air, with the help of a glass tube, but not water bubbles. It is because

(A) The excess pressure inside water bubble being more due to large surface tension


(B) The excess pressure inside water bubble being less due to large surface tension(C) The excess pressure inside water bubble being more due to large viscosity


(D) The excess pressure inside water bubble being more due to less viscosity

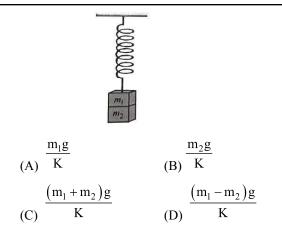
- When the temerature increases, the viscosity of (A) Gases decreases and liquids increases
 (B) Gases increases and liquids decreases
 (C) Gases and liquids increases
 (D) Gases and liquids decreases
- 15. Two uniform brass rods A and B of length 1 and 21 and radii 2r and r respectively are heated to the same temperature. The ratio of the increase in the volume of A to that of B is (A) 1:1 (B) 1:2 (C) 2:1 (D) 1:4
- 16. The r.m.s. speed of gas molecules is given by

(A) $2.5\sqrt{\frac{\text{RT}}{\text{M}}}$ (B) $1.73\sqrt{\frac{\text{RT}}{\text{M}}}$ (C) $2.5\sqrt{\frac{M}{RT}}$ (D) $1.73\sqrt{\frac{\text{RT}}{\text{RT}}}$

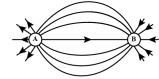
Volume-temperature graph at atmospheric pressure for a monoatomic gas (V in m³, T in °C) is

- **18.** A monoatomic gas (=5/3) is suddenly compressed to of its original volume adiabatically, then the pressure of the gas will change to
 - $\begin{array}{c} \frac{24}{5} \\ \text{(A)} & \frac{5}{5} \\ \text{(B) 8} \\ \text{(C)} & \frac{40}{3} \end{array}$

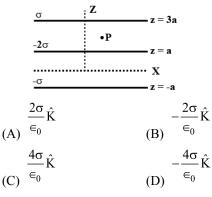
(D) 32 times its initial pressure

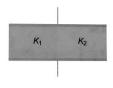

19. A black body has maximum wavelength λ_m at temperature 2000 K. Its corresponding wavelength at temperature 3000 K will be

(A)
$$\frac{3}{2}\lambda_{m}$$
 (B) $\frac{2}{3}\lambda_{m}$
(C) $\frac{4}{9}\lambda_{m}$ (D) $\frac{9}{4}\lambda_{m}$

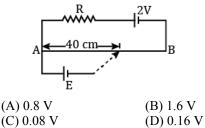

A black body radiates energy at the rate of E W/m2 at a high temperature TK. When the

temperature is reduced to $\frac{T}{2}K$, the radiant energy will be (A) E/16 (B) E/4 (C) 4E (D) 16E


- 21. The time period of the variation of potential energy of a particle executing SHM with period T is
 (A) T/4
 (B) T
 (C) 2T
 (D) T/2
- 22. Two masses m1 and m2 are suspended together by a massless spring of constant K. When the masses are in equilibrium, m1 is removed without disturbing the system. The amplitude of oscillations is


- **23.** The loudness and pitch of a sound depends on
 - (A) Intensity and velocity
 - (B) Frequency and velocity
 - (C) Intensity and frequency
 - (D) Frequency and number of harmonics
- 24. The spatial distribution of the electric field due to charges (A, B) is shown in figure. Which one of the following statement is Correct

- (A) A is +ve and B ve and |A| > |B|
- (B) A is -ve and B +ve; |A|=|B|
- (C) Both are + ve but A > B
- (D) Both are ve but A > B
- 25. Three infinitely long charge sheets are placed as shown in figure. The electric field at point P is



26. A parallel plate condenser is field with two dielectrics as shown. Area of each plate is A $metre^2$ and the separation is t. The dielectric constants are K_1 and K_2 respectively. Its capacitance in farad will be

(A)
$$\frac{\epsilon_0 A}{t} (K_1 + K_2)$$

(B)
$$\frac{\epsilon_0 A}{t} \cdot \frac{K_1 + K_2}{2}$$

(C)
$$\frac{2 \epsilon_0 A}{t} \cdot (K_1 + K_2)$$

(D)
$$\frac{\epsilon_0 A}{t} \cdot \frac{K_1 + K_2}{2}$$

- 27. Drift velocity V_d varies with the intensity of electric field as per the relation
 - (A) $v_d \propto E$ (B) $v_d \propto \frac{1}{E}$ (C) v_d = constant (D) $v_d \propto E^2$
- 28. AB is a potentiometer wire of length 100 cm and its resistance is 10 ohm. It is connect in series with a resistance R = 40 ohm and a battery of e.m.f. 2 V and negligible internal resistance. If a source of unknown e.m.f. E is balanced by 40 cm length of the potentiometer wire, the value of E is

A magnetic needle suspended parallel to a magnetic field requires $\sqrt{3}J$ of work to turn it through 60°. The torque needed to maintain the needed in this position will be

(A) $2\sqrt{3}J$	(B) 3J
(C) $\sqrt{3}J$	(D) $\frac{3}{2}$ J

29.

- 30. There is no couple acting when two bar magnets are placed coaxially separated by a distance because
 (A) There are no force on the poles
 (B) The force are parallel and their lines of action do not coincide
 (C) The force are perpendicular to each other
 (D) The force act along the same line
- **31.** A current *i* ampere flows along the inner conductor of a coaxial cable and returns along the outer conductor of the cable, then the magnetic induction at any point outside the conductor at a distance *r* metre from the axis is (A) ∞ (B) Zero

(C)
$$\frac{\mu_0}{4\pi} \frac{2i}{r}$$
 (D) $\frac{\mu_0}{4\pi} \frac{2\pi i}{r}$

- 32. A coil having an area $2m^2$ is placed in a magnetic field which changes from $1Wb/m^2$ to $4Wb/m^2$ in a interval of 2 second. The e.m.f. induced in the coil will be (A) 4V (B) 3V(C) 1.5V (D) 2V
- 33. A metal plate gets heated when cathode rays strike against it due to
 (A) Kinetic energy of cathode rays
 (B) Potential energy of cathode rays
 (C) Linear velocity of cathode rays
 - (D) Angular velocity of cathode rays
- 34. For moving ball of cricket, the correct statement about de-Broglie Wavelength is(A) it is not application for such big particle

(B)
$$\frac{h}{\sqrt{2mE}}$$

(C) $\sqrt{\frac{h}{2mE}}$
(D) $\frac{h}{2mE}$

h

35. If the voltage of X-ray tube is doubled, the intensity of X-ray will become (A) Half (B) Unchanged (C) Double (D) Four times

(SECTION-B)

- **36.** The number of electrons, neutrons and protons in a species are equal to 10, 8 and 8 respectively. The proper symbol of the species is (A) ${}^{16}O_8$ (B) ${}^{18}O_8$
 - (C) ${}^{18}\text{Ne}_{10}$ (D) ${}^{16}\text{O}_8^{2-}$
- **37.** The ionisation energy of 10 times ionised sodium atom is

(A) 13.6 <i>eV</i>	(B) ^{13.6×11} eV
(C) $\frac{13.6}{11}$ eV	
(C) 11 °	(D)
13.6×(11) ² eV	

38. The energy equivalent of 1 *kilogram* of matter is about

(A) $10^{-15} J$	(B) 1 <i>J</i>
(C) $10^{-12} J$	(D) 10 ¹⁷ J

39. Consider the junction diode as ideal. The value of Current flowing through AB is

$$\begin{array}{c|c}
A & 1 k\Omega \\
& +4 V & -6 V \\
\hline
(A) 0A & (B) 10^{-2} A \\
(C) 10^{-1} A & (D) 10^{-3} A
\end{array}$$

40. For transistor action (1) Base, emitter and collector regions should have similar size and doping concentrations. (2) The base region must be very thin and lightly doped (3) The emitter-base junction is forward biased and base-collector junction is reverse biased (4) Both the emitter-base junction as well as the base collector junction are forward biased Which one of the following pairs of statement is correct (A)(4),(1)(B)(1),(2)(C)(2),(3)(D)(3),(4)

41. Energy of an electron in n^{th} orbit of hydrogen

atom is
$$k = \frac{1}{4\pi\varepsilon_0}$$

(A)
$$-\frac{2\pi^2 k^2 m e^4}{n^2 h^2}$$
 (B) $-\frac{4\pi^2 m k e^2}{n^2 h^2}$
(C) $-\frac{n^2 h^2}{2\pi k m e^4}$ (D) $-\frac{n^2 h^2}{4\pi^2 k m e^2}$

- 42. A conducting rod of length l is falling with a velocity a perpendicular to a uniform horizontal magnetic field B. The potential difference between its two ends will be (A) 2B/v (B) B/v $\frac{1}{2}$ B/v (D) B^{2/2}v²
- 43. The phase difference between the ac and emf is $\pi/2$. Which of the following cannot be the constituent of the Circuit (A) LC (B) L alone (C) C alone (D) R, L
- 44. In the given reaction $ZX^A \rightarrow {}_{Z^{+1}}Y^A \rightarrow {}_{Z^{-1}}K^{A\cdot 4}$ $\rightarrow {}_{Z^{-1}}K^{A\cdot 4}$. radioactive radiations are emitted in the sequence (A) α , β , γ (B) β , α , γ (C) γ , α , β (D) β , γ , α

45. A force F is given by F = at + bt2, where t is time. What are the dimensions of a and b
(A) MLT⁻³ and ML²T⁻⁴
(B) MLT⁻³ and MLT⁻⁴
(C) MLT⁻¹ and MLT⁰
(D) MLT⁻⁴ and MLT¹

- 46. What determines the nature of the path followed by the particle
 (A) Speed
 (B) Velocity
 (C) Acceleration
 (D) Both (B) and (C)
- 47. A ray of light is incident normally on one of the face of a prism of angle 30° and refractive index $\sqrt{2}$. The ngle of deviation will be (A) 26° (B) 0° (C) 23° (D) 15°
- **48.** Two slits are separated by a distance of 0.5 mm and illuminated with light of $\lambda = 6000$ Å. If the screen is placed 2.5 m from the slits. The distance of the thired right fringe from the centre will be

(A) 1.5 mm	(B) 3 mm
(C) 6 mm	(D) 9 mm

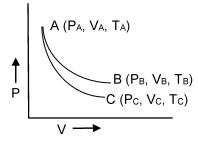
49. Light is incident on a glass surface at polarising angle of 57.5°. Then the angle between the incident ray and the refracted ray is

(A) 57.5°	(B) 115°
(C) 65°	(D) 205°

- **50.** Energy associated with a moving charge is due to a
 - (A) Electric field
 - (B) Magnetic field
 - (C) Both electric field and magnetic field
 - (D) None of these

	CHEM	ISTRY	
	(SECT	ION-A)	
51.	 Which is not a basic postulate of Dalton's atomic theory ? (A) Atoms are neither created nor destroyed in a chemical reaction. (B) Different elements have different types of atoms. (C) Atoms of an element may be different due to presence of isotopes. (D) Each element is composed of extermely small particles called atoms. 	58.	(A) $Na^{+} > Li^{+} > Mg^{2+} > Be^{2+}$ (B) $Li^{+} > Na^{+} > Mg^{2+} > Be^{2+}$ (C) $Mg^{2+} > Be^{2+} > Li^{+} > Na^{+}$ (D) $Li^{+} > Be^{2+} > Na^{+} > Mg^{2+}$ In which of the following pairs of molecules/ions, both the species are not likely to exist? (A) H^{+}_{2} , He^{2-}_{2} (B) H^{-}_{2} , He^{2-}_{2} (C) H^{-}_{2} , He^{2-}_{2} (D) H^{-}_{2} , He^{2+}_{2}
52.	A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be (A) 1.4 (B) 4.4 (C) 2.8 (D) 3.0	59.	Which one of the following statements about water is FALSE ?(A) Water can act both as an acid and as a base.(B) There is extensive intramolecular hydrogen bonding in the condensed phase.
53.	The angular momentum of an electron in a given orbit is J, Its kinetic energy will be : 1 J^2 Jv		(C) Ice formed by heavy water sinks in normal water.(D) Water is oxidized to oxygen during photosynthesis.
	(A) $\frac{1}{2} \frac{J^2}{mr^2}$ (B) $\frac{Jv}{r}$ (C) $\frac{J^2}{2m}$ (D) $\frac{J^2}{2\pi}$	60.	Which of the following are Lewis acids ?(A) PH_3 and $SiCl_4$ (B) BCl_3 and $AlCl_3$ (C) PH_3 and BCl_3 (D) None of these
54.	(C) $2m$ (D) 2π The orbital angular momentum for an electron	61.	
	revolving in an orbit is given by $\sqrt{\ell}$ ($\ell + 1$) $\frac{h}{2\pi}$. This momentum for an s-electron will be given by (A) + $\frac{1}{2}$. $\frac{h}{2\pi}$ (B)	62.	The correct order of C–O bond length among CO, CO_3^{2-} and CO_2 is : (A) $CO_2 < CO_3^{2-} < CO$ (B) $CO < CO_3^{2-} < CO_2$ (C) $CO_3^{2-} < CO_2 < CO$ (D) $CO < CO_2 < CO_3^{2-}$
	Zero h h	63.	Which of the following is electron-deficient ?(A) $(SiH_3)_2$ (B) $(BH_3)_2$ (C) PH_3 (D) $(CH_3)_2$
	(C) $\frac{1}{2\pi}$ (D) $\sqrt{2}$ $\frac{1}{2\pi}$	64.	The general electronic configuration of Zn, Cd and Hg is represented by : (A) (a + b) = (A +
55.	Which one of the following ions has the highest value of ionic radius ? (A) L^{+} (D) D^{+} (C) Q^{+} (D) Γ^{-}	<i></i>	$ \begin{array}{cccc} (A) & (n-1)d^{10} n s^2 \\ (C) & (n-1)d^{10} 4 s^1 \end{array} \qquad \begin{array}{cccc} (B) & (n-1)d^9 4 s^2 \\ (D) & (n-1)d^{10} 4 s^0 \end{array} \\ \end{array} $
56.	 (A) Li⁺ (B) B³⁺ (C) O²⁻ (D) F⁻ The lanthanide contraction is responsible for the fact that : 	65.	Most common oxidation state fo Ce (Cerium) are : (A) +3, +4 (B) +2, +3 (C) +2, +4 (D) +3, +5
	(A) Zr and Y have about the same radius(B) Zr and Nb have similar oxidation state(C) Zr and Hf have about the same radius(D) Zr and Zn have same oxidation state.	66.	Assertion: Transition metals show variable valence. Reason : Due to a large energy difference between the ns^2 and $(n-1)d$ electrons.
57.	The set representing the correct order of ionic radius is :		(A) If both assertion and reason are true and the reason is the correct explanation of the assertion.

67.	reason is not the co assertion. (C) If assertion is true	d reason both are false.	73.	Which of the following organic compounds has same hybridization as its combustion product –(CO ₂) ? (A) Ethane (B) Ethyne
	(A) $[Co(en)_2Cl_2]^+$	(B) [Co(NH ₃) ₅ Cl] ²⁺		(C) Ethene (D) Ethanol
	(C) $[Ir(PhR_3)_2H(CO)]^2$	(D) $[Ru(NH_3)_4Cl_2]^+$		
68.	The value of 'spin on	ly' magnetic moment for	74.	$(P) \xrightarrow{H_2/Ni} Q$
	one of the following	g configurations is 2.84		Which of the following is the correct statement about P & Q.
	BM. The correct one is	s:		(A) Product will be 1-Methyl-3-(2-methylpropyl)cyclohexane.
	(A) d ⁴ (in strong field	ligand)		(B) Product will be
	(B) d ⁴ (in weak field ligand)			3-Methyl-1-(2-methylpropyl)cyclohexane. (C) DU of reactant P is 3.
	(C) d ³ (in weak as wel	l as strong field ligand)		(D) DU of product Q is zero.
	(D) d^5 (in strong field	ligand)	75.	When Cl ₂ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation
69.		hylenediaminetetraacetic		number of chlorine changes from : (A) Zero to $+1$ and zero to -5
	acid) molecules are required to make an octahedral complex with a Ca^{2+} ion ?			(A) Zero to $+1$ and zero to -5 (B) Zero to -1 and zero to $+5$
	(A) Six	(B) Three		(C) Zero to -1 and zero to +3(D) Zero to +1 and zero to -3
	(C) One	(D) Two		
70.	In which of the	following octahedral	76.	Assertion : Vision is not a photochemical reaction.
70.		(at no. 27), will the		Reason : Halogenation of alkenes is a
	magnitude of Δ_0 be the highest?			photochemical reaction.
	(A) $[Co(C_2O_4)_3]^{3-1}$	(B) $[Co(H_2O)_6]^{3+}$		(A) If both assertion and reason are true and the reason is the correct explanation of the
	(C) $[Co(NH_3)_6]^{3+}$	(D) $[Co(CN)_6]^{3-}$		(B) If both assertion and reason are true but
71.	acid ?	ollowing is the strongest		reason is not the correct explanation of the assertion.
	(A) CHB r_3	(B) CHCl ₃ (D) CH(CN) ₃		(C) If assertion is true but reason is false.
	(C) CHI_3	$(D) CH(CN)_3$		(D) If assertion is false but reason is true.
72.	The increasing basicit compounds is : (A) CH ₃ CH ₂ NH ₂	ty order of the following	77.	The enthalpy of fusion of water is 1.435 kcal/mol. The molar entropy change for the
				melting of ice at 0°C is : (A) 10.52 cal / (mol K)
	CH2CH3 I CH2CH2NH			(B) $21.04 \text{ cal / (mol K)}$
	(B) CH ₃ CH ₂ NH			(C) 5.260 cal / (mol K)
	CH ₃			(D) $0.526 \text{ cal} / (\text{mol K})$
	(C) $H_3C-N-CH_3$		78.	For the reaction :
	CH3 I (C) H3C-N-CH3 CH3 I			$X_2O_4(l) \rightarrow 2XO_2(g)$
	(D) Ph–N–H			$\Delta U = 2.1 \text{ k cal}, \Delta s = 20 \text{ cal } \text{K}^{-1} \text{ at } 300 \text{ K}$
	(A) (A) $<$ (B) $<$ (C) $<$			300 K ΔU = 2.1 k cal, Δs = 20 cal K ⁻¹
	(B) (D) < (C) < (B) < (C) < (C) < (C) < (D) < (C) <			
	(C)(A) < (B) < (D) < (D) < (D) < (D) < (A) < (Hence, ΔG is


(A) 2.7 k cal	(B) –2.7 k cal
(C) 9.3 k cal	(D) –9.3 k cal

79. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal

energy ΔU of the gas in joules will be:

(A) 1136.25 J	(B) –500 J
(C) –505 J	(D) +505 J

80. Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure :

 $AB \longrightarrow$ Isothermal expansion

AC \longrightarrow Adiabatic expansion Which of the following options is not correct?

- 81. Select the correct combination :
 (A) The aqueous solution of each Na₃BO₃ and Na₃PO₄ Acidic nature
 (B) The aqueous solution of each Na₃BO₃ and CH₃COONa basic nature
 (C) The aqueous solutions of each
 - (C) The aqueous solutions of each CH_3COONa and NaCN acidic nature
 - (D) The aqueous solutions of each $\rm Na_3PO_4$ and $\rm NH_4Cl-acidic nature$
- 82. Addition of sodium acetate solution to acetic acid cause the following change
 (A) pH increases
 (B) pH decreases
 (C) pH remains unchanged
 (D) pH becomes 7
- 83. Solubility of MX₂ type electrolytes is 0.5 ×10⁻⁴ mol/L, then find out K_{sp} of electrolytes. (A) 5×10^{-12} (B) 25×10^{-10} (C) 1×10^{-13} (D) 5×10^{-13}
- **84.** Assertion : A ionic product is used fro any types of electrolytes whereas solubility product is applicable only to sparingly soluble salts.

Reason : Ionic product is defined at any stage of the raction whereas solubility product is only appicable to the saturation stage.

(A) If both assertion and reason are true and the reason is the correct explanation of the assertion.

(B) If both assertion and reason are true but reason is not the correct explanation of the assertion.

(C) If assertion is true but reason is false.

(D) If the assertion and reason both are false.

85. Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The partial vapour pressure of benzene at 20 °C for a solution containing 78 g of benzene and 46 g of toluene in torr is :

(A) 50
(B) 25

(C) 37.5 (D) 53.5

(SECTION-B)

- 86. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass = $60g \text{ mol}^{-1}$) in the same solvent. If the densities of both the solutions are assumed to be equal to 1.0 g cm⁻³, molar mass of the substance will be (A) 105.0 g mol⁻¹ (B) 210.0 g mol⁻¹ (C) 90.0 g mol⁻¹ (D) 15.0 g mol⁻¹
- 87. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water (ΔT_f), when 0.01 mole of sodium sulphate is dissolved in 1 kg of water, is (K_f = 1.86 K kg mol⁻¹) (A) 0.0372 K (B) 0.0558 K (C) 0.0744 K (D) 0.0186 K
- 88. Which of the following is/are function(s) of salt bridge ?
 (A) It completes the electrical circuit
 (B) It maintains electrical neutrality by flow of ions between the two compartments through salt bridge
 (C) It minimises the liquid liquid junction potential
 (D) All of these
- 89. For Zn^{2+} / Zn , $E^{\circ} = -0.76$ V, for $Ag^{+}/Ag E^{\circ} = 0.799$ V. The correct statement is -

(A) the reaction Zn getting reduced Ag getting oxidized is spontaneous (B) Zn undergoes reduction and Ag is oxidized

- (C) Zn undergoes oxidation Ag⁺ gets reduced
- (D) No suitable answer

90.

 $\mathsf{Pt} \left| \begin{array}{c|c} \mathsf{H}_2 & \mathsf{H}^{\scriptscriptstyle +} \\ (\mathsf{p}_1) & (\mathsf{1M}) \end{array} \right| \left| \begin{array}{c} \mathsf{H}^{\scriptscriptstyle +} & \mathsf{H}_2 \\ (\mathsf{1M}) & (\mathsf{p}_2) \end{array} \right| \mathsf{Pt}$ (where p₁

and p_2 are pressures) cell reaction will be spontaneous if :

- (A) $p_1 = p_2$ (B) $p_1 > p_2$ (D) $p_1 = 1$ atm
- (C) $p_2 > p_1$
- 91. When initial concentration of a reactant is doubled in a reaction, its half-life period is not effected. The order of the reaction is :
 - (A) First
 - (B) Second
 - (C) More than zero but less than first
 - (D) Zero
- 92. In a $S_N 2$ substitution reaction which one of the following has the highest relative rate ?
 - $R \longrightarrow Br + Cl^{-} \longrightarrow R \longrightarrow Cl + Br^{-}$ (A) $(CH_3)_3 C - CH_2Br$ (B) CH₃CH₂Br (C) CH₃CH₂CH₂Br $(D) (CH_3)_2 CH - CH_2Br$
- 93. The correct difference between first and second-order reactions is that

(A) The rate of a first-order reaction does not depend on reactant concentrations ; the rate of a second order reaction does depend on reactant concentrations

(B) The rate of a first-order reaction does depend on reactant concentrations ; the rate of a second-order reaction does not depend on reactant concentrations

(C) A first-order reaction can be catalyzed ; a second -order reaction cannot be catalyzed

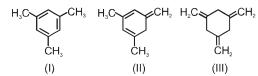
(D) The half-life of a first-order reaction does not depend on [A]₀ ; the half-life of a second-order reaction does depend on [A]₀

94. Assertion : In electrolysis, the quantity of electricity needed for depositing 1 mole of silver is different from that required for 1 mole of copper.

> Reason : The molecular weights of silver and copper are different

(A) If both assertion and reason are true and the reason is the correct explanation of the assertion.

(B) If both assertion and reason are true but reason is not the correct explanation of the assertion.


(C) If assertion is true but reason is false.

(D) If the assertion and reason both are false.

- 95. Treatment of cyclopentanone with methyl lithium gives which of the following species ? (A) Cyclopentanonyl cation (B) Cyclopentanonyl radical (C) Cyclopentanonyl biradical (D) Cyclopentanonyl anion
- 96. Reactivity order of halides for dehydrohalogenation is (A) R - F > R - Cl > R - Br > R - I(B) R - I > R - Br > R - Cl > R - F(C) R - I > R - Cl > R - Br > R - F(D) R - F > R - I > R - Br > R - Cl

97. Which of the following reagents would distinguish cis-cyclopenta-1,2- diol from the trans-isomer? (A) Aluminium isopropoxide (B) Acetone (C) Ozone (D) MnO₂

98. Given

The enthalpy of hydrogenation of these compounds will be in the order as : $(\mathbf{A}) | \mathbf{II} > \mathbf{I} > \mathbf{I} > \mathbf{I}$ (\mathbf{P}) II \setminus III \setminus I

(1) $11 \times 1 \times 1$	(\mathbf{D}) $\mathbf{H} \neq \mathbf{H} \neq \mathbf{I}$
(C) II > I > III	(D) I > II > III

99. RCH = CH₂
$$\xrightarrow{\text{Na/NH}_3(\ell)}$$
 RCH₂CH₃
This reaction is called as :
(A) Fischer-Siper reaction
(B) Clemmensen reduction

(C) Birch reduction

(D) Arndt-Eistert synthesis

100.	Which of the following	g carbohydrates is a	
	monosaccharide ?		
	(A) Sucrose	(B) Maltose	
	(C) Fructose	(D) Starch	

		BIOI	LOGY	
		BOTANY (S	SECTION-	A)
101.		me division but different		(D) (iv) (ii) (i) (iii)
	order will be kept und		110.	Monocot root is differ from dicot root in
	(A) Family	(B) Genus		having:
	(C) Species	(D) Class		(A) Open vascular bundle
102.	Which of the follow	ving organisms are not		(B) Scattered vascular bundle
102.		blantae of two kingdom		(C) Large pith
	classification system p			(D) Radial vascular bundle
	(A) Bacteria	(B) Algae		()
	(C) Protozoans	(D) Fungi	111.	In leaves, ground tissue consists of
				(A) Mesophyll.
104.	used by taxor	nomists these days		(B) Palisade tissue only.
	(A) Cytotaxonomy			(C) Spongy parenchyma only.
	(B) Numerical taxonor	my		
	(C) Chemotaxonomy			(D) Epidermis and bindle sheath.
	(D) Classical taxonom	ly .		
105	Ham many of the hal	and factures and accuracy	112.	The vascular cambium normally gives rise to:
105.	for green algae, brown	ow features are common		(A) Primary phloem
Chlana		quatic habitat, Thalloid		(B) Secondary xylem
		cell wall, Phycocolloids,		(C) Periderm
	lated gametes	cell wall, I llycocolloids,		(D) Phelloderm
Ingen	(A) Four	(B) Five		
	(C) Two	(D) Three	113.	Chromatin is chemical made of:
	(0) 100			(A) Nucleic acid, histone and non-histone
106.	Coralloid roots of Cyc	as possess symbiotic:		proteins
	(A) Rhizobium	(B) Prokaryote		(B) Nucleic acid and histone proteins
	(C) Pteridophyte	(D) Green algae		(C) Nucleic acid and non-histone proteins
				(D) Nucleic acid
107.	Mannitol is the stored	food in:-		(D) Nucleic acid
	(A) Gracillaria	(B) Chara	114.	Mitochondria are semi-autonomous as they
	(C) Porphyra	(D) Fucus	114.	2
	(-)	(=) = ====		possess:
108.	When gynoecium is	present in the topmost		(A) DNA
100.	position of thalamus, t	1 1		(B) DNA + RNA
	(A) Inferior	(B) Half inferior		(C) DNA + RNA + Ribosomes
	(C) Half superior			(D) Proteins
	(C) Hall superior	(D) Superior		
109.	Match Column - I wit	h Column II	115.	The cromosome showing L-shaped structure
109.				by the presence of centromere is termed as:-
	Column - I	Column – II		(A) Acentric (B) Metacentric
	(a) $\% \dot{Q} K_{(5)} C_{1+2+(2)} A_{(5)}$	(ii) Brassicacease (ii) Liliaceae (iii) Fabaceae (iii) Fabaceae		(C) Sub-metacentric (D) Telocentric
	T (3 556)			
	(h) adr cha	(ii) Liliaceae	116.	What will be the gametic chromosome number
	$\oplus \Upsilon \mathbf{A}_{(5)} \mathcal{C}_{(5)} \mathcal{A}_5 \underline{\mathcal{O}}_2$	(ii) Lindcede		of a cell, if somatic cell have 40 chromosomes
	1			(A) 10 (B) 20 (C) 30 (D) 40
	(c) $\oplus \mathbf{P}_{(3+3)}\mathbf{A}_{3+3}\mathbf{G}_{(3+3)}\mathbf{A}_{3+3}\mathbf{G}_{(3+3)}$, (iii) Fabaceae		
			16.	During mitosis number of chromosomes gets:-
	(d) A QK CV C	(iv) Solanaceae		(A) Change
	$(\mathbf{u}) \cup \mathbf{Y} \mathbf{n}_{2+2} \mathbf{C}_4 \mathbf{A}_{2-4} \mathbf{O}$			(B) No change
	Select the correct an	nswer from the options		(C) May be change if cell is mature
	given below.			(D) May be change if cell is immature
	(a) (b)	(c) (d)		T 1 1 1 1
	(A) (iii) (iv)	(ii) (i)	117.	In plant cells, cytokinesis occurs by:
	(B) (i) (ii)	(iii) (iv)		(A) Furrowing
				(C) Invagination
	(C) (ii) (iii)	(iv) (i)		(B) Cell plate formation(C) Invagination

118.	(D) Anticlinal divisionIf the number of chromosomes in G₁ phase of a cell is 18, then the number of chromosomes			
	-	hase of that ce (D) 27		(D) 10
	(A) 9	(B) 27	(C) 36	(D) 18
119.		dramatic peri		-
	(A) Interg	-	(B) M-ph	
	(C) S-pha	ase	(D) G_0 -pl	nase
120.	Mitosis ii	n higher group	of plants is	
	(A) Anas	tral and centri	c	
	(B) Astra	and acentric		
	(C) Anas	tral and acenti	ric	
	(D) Amp	hiastral and ce	entric	
121.	C ₄ plants	are more eff	icient in pho	tosynthesis
	than C ₃ p	lants due to:		
	(A) High	er leaf area		
	(B) Prese	ence of larger i	number of cho	oloplasts in
	the leaf c	ells		
	(C) Prese	ence of thin cu	ticle	
	(D) Lowe	er rate of phot	orespiration	
122.	CAM hel	ps the plants i	n:-	
	(A) Conserving water			
		ndary growth		
		ise resistance		
	(D) Repr			
123.	Who received the Nobel Prize for working out			
	the early carbon pathway of photosynthesis?			
	(A) Calvi	in	(B) Krebs	8
	(C) Von 1	Niel(D) Kame	n	
124.	Which fr	action of the	visible spectru	um of solar
	radiation	s is primarily	absorbed by o	carotenoids
	of higher	plants?		
	(A) Viole	et and blue		
	. ,	and green		
	(C) Greet	-		
	. ,	w and orange		
125.	Which of	f the following	comparative	account is
123.		w.r.t. respirate		
			bry process?	
	Ferment			
		al oxidation		a d
		amount of ene	rgy is releas	ea
		oss as heat		
	(D) No E			
		respiration		
		plete oxidation		
	–	amount of en	ergy is release	ed
	(C) Heat	loss occurs		

(D) ETC present 126. Vernalisation stimu		s flowering in		
120.	Vernalisation stimulates flowering in: (A) Carrot (B) Ginger			
	(C) Zamikand	(D) Turmeric		
	(C) Zamikana	(D) Turmenc		
127.	Phytochrome is response	sible for		
12/1	(A) Photosynthesis	(B) Flowering		
	(C) Fruit formation	(D) Respiration		
	(c) I full formation	(D) Respiration		
128.	Auxanometer is used to	detect		
	(A) Respiration rate			
	(B) Plant growth			
	(C) Transpiration rate			
	(D) Size of stomatal ap	erture		
129.	Parthenogenesis occurs	when:-		
		rmed without the fusion		
	of egg and the sperm			
		formed by the fusion of		
	egg and sperm	5		
	(C) When embryo is for	rmed from another cell		
	(D) When sperm produc	ces the embryo directly		
120				
130.	Nucellus is found in:-	(D) D 11		
	(A) Cell	(B) Pollen		
	(C) Ovule	(D) Leaf		
	F 1 · · · · · · · · · · · · · · · · · ·			
131.	Endosperm is generally			
	(A) Triploid	(B) Haploid		
	(C) Tetraploid	(D) Without nuclei		
132.	Which one of the	following cannot be		
	explained on the basi	s of Mendel's Law of		
	Dominance?			
		low any belending and		
	both the characters re	ecover as such in F_2		
	generation			
	(B) Factors occur in pai	irs		
		controlling a particular		
	character is called a fac			
		factors one is dominant		
	and the other recessive			
133.	-	atements and state true		
	(T) and false (F):			
	A. The genotypic rati	io of flower colour in		
	• • • • •	similar to genotypic		
	ratio of Mendelian mon			

B. In a diploid organism, there are four copies of each gene.

C. If we want to determine the genotype of violet flowered pea plant, then it is crossed with recessive parent.

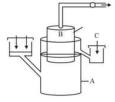
	А	В	С
(A)	Т	F	Т
(B)	Т	Т	Т

- (C) F F T
- (D) F T T
- 134. DNA replication, each new strand begins at its(A) 5' end(B) 3' end
 - (C) Both 5' and 3' ends
 - (D) end opposite to template strand
- **135.** The process of copying genetic information from one strand of DNA into RNA is termed as
 - (A) Translation
 - (B) Transformation
 - (C) Transcription
 - (D) Reverse transcriptio

(SECTION-B)

- 136. Sequence of nucleotides in mRNA is similar to which strand of DNA, except uracil in place of thymine?
 (A). Coding strand
 (B) Template strand
 (C) Antisense strand
 - (D) Both (B)and (C)
- **137.** Which one is incorrect statement?
 - (A) The basic unit of DNA is nucleotide.
 - (B) A nitrogenous base is linked to pentose sugar by N-glycosidic linkage.

(C) Adenosine, guanosine, and cytidines are nucleotides.


(D) DNA is the largest macromolecule of the cell.

- 138. The enzyme responsible for transcription is :-(A) D.N.A polymerase-I
 (B) R.N.A. polymerase
 (C) Reverse transcriptase
 (D) D.NA. polymerase-III
- 139. Which of the following is a stop codon :(A) AUG, GUG, UUU
 (B) UGA, UAG, UAA
 (C) UUU, UAC, CUC
 (D) CUC, UAC, UAA
- **140.** Match the column I with column II for genes of lac operon, and select the correct option.

Column I	Column II
A. Z gene	(i) Transacetylase
B. Y gene	(ii) Repressor
C. A gene	(iii) B-Galactosidase
D. i gene	(iv) Permease
(A) A-iv; B-iii; C-i; Dii	

(B) A-iii; B-i; C-iv; D-ii
(C) A-iii; B-iv; C-i; D-ii
(D) A-iii; B-ii; C-iv; Di

- 141. Which of the following molecules characteristically contains unusual bases?
 (A) 16s rRNA
 (B) 28s rRNA
 (C) Structural RNA
 (D) tRNA
- **142.** The figure given below shows a typical biogas plant. Which of the following four option products labeled as A, B, and C are correctly identified

(A) A — Sludge; B — $CH_4 + CO_2$; C — Dung + water

(B) A — Digester; B — $CH_4 + CO_2$; C — Sludge + water

(C) A — Sludge; B —
$$CH_4 + NO_2$$
; C — Sewage

(D) A — Digester; B — CH₄; CO₂; C — Dung + water

- 143. Evolutionary biologists believe that the success of mammals is largely due to their ability of (A) Migration
 (B) Thermoregulation and osmoregulation
 (C) Hibernation
 (D) Confirmation
- 144. Which of the following is not an attribute of a population?
 (A) Species interaction (B) Sex ratio
 (C) Natality (D) Mortality
- 145. Predation is important for :
 (A) Transfer of energy
 (B) Keeping prey population under control
 (C) Maintaining species diversity
 (D) All of these
- **146.** Identity the correct sequence of steps in the process of decomposition.
 - (a) Mineralisation
 - (b) Fragmentation of detritus
 - (c) Catabolism
 - (d) Leaching
 - (e) Humification

- (A) $b \rightarrow d \rightarrow e \rightarrow d \rightarrow a$
- (B) b \rightarrow d \rightarrow c \rightarrow e \rightarrow a
- (C) $c \rightarrow b \rightarrow e \rightarrow a \rightarrow d$

(D) $c \rightarrow d \rightarrow b \rightarrow a \rightarrow e$

- 147. The phenomenon of incorporation of nutrients in living microbes is called (A) Mineralisation. (B) Decomposition. (C) Scarification. (D) Nutrient immobilisation.
- 148. The abiotic factor promoting the process of decomposition of detritus is (a) Increase in temperature above 25°C. (b) Moist environment. (c) Poor aeration. (d) Water logging condition. (A) Only (a) and (d) (B) Only (a) and (b)
 - (C) (a), (b), and (c) (D) (b) and (c) only
- 149. Read the following statements carefully w.r.t. conservation of biodiversity:

Conservation of biodiversity A. for philosophical or spiritual need to realize that every species has intrinsic value and moral duty to pass over biological legacy for future generation.

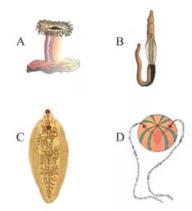
B. Conservation of biodiversity for direct economical benefits like food, medicine, industrial product, etc.

Select the correct option for above given statements:

Α

- (A) Ethical argument
- (B) Ethical argument
- (C) Narrowly utilitarian argument
- (D) Broadly utilitarian argument

B


151.

- (A) Narrowly utilitarian argument
- (B) Broadly utilitarian argument
- (C) Utilitarian argument
- (D) Narrowly utilitarian argument
- 150. Sacred groves are useful in :
 - (A)Conserving rare and threatened species
 - (B)Generating environmental awareness
 - (C) Year round flow of water in rivers
 - (D) Preventing soil erosion

ZOOLOGY (SECTION-A)

Vetrebrates have (A) Dorsal tubular nerve cord (B) Ventrally situated heart (C) Body cavity with alimentary canal (D) All the above

- 152. Which of the following animal is not viviparous? (A) Elephant
 - (B) Platypus (C) Whale
 - (D) Flying fox (bat)
- 153. Examine the figures A, B, C, and D. In which one of the four options given all the items A, B, C, and D are correctly identified?

A-Physalia; C-Planaria; B-Nereis; (A)

D-Hormiphora

(B) A-Physalia; B-Ascaris; C-Fasciola;

D-Pleurobrachia

- (C) A-Adamsia; B-Balanoglossus;
- C-Fasciola; D-Pleurobrachia
- (D) A-Hydra; B-Balanoglossus; C-Planaria;

D-Ctenophora

- 154. Cartilaginous cranium and vertebral column are observed in (A) Aves (B) Mammals (C) Amphibia (D) Cyclostomata
- 155. Which of the following found in frog :-(A) five fingers and four toes (B) four fingers and five toes (C) five fingers and five toes (D) four fingers and four toes
- 156. Mark the odd one w.r.t. paired structures found in frog's brain. (A) Cerebral hemisphere (B) Optic lobes (C) Olfactory lobes (D) Diencephalon

- 157. Sinus venosus is an accessory chamber of heart attached with (A) Right ventricle (B) Right atrium (C) Left ventricle (D) Left atrium 158. Prokaryotic DNA is:-(A) double stranded round (B) single stranded round (C) double stranded straight (D) double stranded RNA as nucleic acid 159. Protein in silk thread is:-(A) Fibroin (B) Keratin (D) Globulin (C) Albumin 160. Find the incorrect match. (A) Maltose = Glucose + Glucose(B) Sucrose = Glucose + Fructose(C) Trehalose = Fructose + Galactose (D) Lactose = Glucose + Galactose161. Under normal physiological conditions in human being every of oxygenated blood can of to the tissues. deliver (A) 5 ml (B) 4 ml (D) 2 ml (C) 10 ml 162. Read the following statements. Which of the following are correct? (i) Lungs are covered with two-layered membrane called pleura. (ii) Right primary bronchus divides into two secondary bronchi. (iii) Respiratory bronchioles, alveolar ducts and alveoli constitute the exchange part of the respiratory tract. (iv) Left lung has three lobes, while the right lung has two. (A) (i) and (ii)(B) (i) and (iii) (C) (ii) and (iv) (D) (iii) and (iv) 163. Flippers of Penguins and Dolphins are examples of (A) Natural selection (B) Adaptive radiation (C) Convergent evolution (D) Industrial melanism 164. The primary sites of exchange of gases are (A) Trachea (B) Alveoli (C) Nasal chamber (D) Bronchioles 165. Which of the following sequence is truly a systemic circulation pathway? (A) Right ventricle \rightarrow Pulmonary aorta \rightarrow Tisues \rightarrow Pulmonary veins \rightarrow Left auricle
- (B) Right auricle \rightarrow Left ventricle \rightarrow Aorta \rightarrow Tissues \rightarrow Veins \rightarrow Right auricle (C) Left auricle \rightarrow Left ventricle \rightarrow Pulmonary Aorta \rightarrow Tissues \rightarrow Right auricle (D) Left auricle \rightarrow Left ventricle \rightarrow Aorta \rightarrow Arteries \rightarrow Tissues \rightarrow Veins \rightarrow Right auricle 166. Atherosclerosis refers to the ailment of: (A) Lungs (B) Heart (C) Kidney (D) Liver 167. means the state of heart when it is not pumping blood effectively enough to meet the needs of the body. (A) Heart attack (B) Heart failure (C) Atherosclerosis (D) Hypertension 168. Hinge joint is present between:-(A) Femur and ulna (B) Humerus and ulna (C) Femur and pectoral girdle (D) Femur and pelvic girdle 169. Thoracic cage in Human is made up of:-(A) Ribs, vertebral column and diaphragm (B) Ribs, diaphragm (C) Vertebral column, diaphragm and sternum (D) Ribs, vertebral column and sternum 170. Identify the incorrect option from the following: (A) White muscle fibres depend on anaerobic respiration and are rich in sarcoplasmic reticulum. (B) Cardiac muscles are branched, striped and uninucleate. (C) A neural signal at neuromuscular junction causes release of acetylcholine which generates action potential. (D) Several motor neurons supplying a single muscle fibre constitute a motor unit. 171. Find the incorrect statement. (A) During oogenesis, meiosis II is completed in fallopian tube (B) Ovum moves due to ciliary action of cells lining oviducts (C) Acrosome has enzymes called sperm lysins (D) During oogenesis, meiosis I is completed in second- ary follicle 172. Use of an artificial kidney during hemodialysis may result in: (a) Nitrogenous waste build-up in the body (b) Non-elimination of excess potassium ions (c) Reduced absorption of calcium ions from gastro-intestinal tract

(d) Reduced RBC production Which of the following options is the most appropriate? (A) (a) and (b) are correct (B) (b) and (c) are correct (C) (c) and (d) are correct (D) (a) and (d) are correct Choose the correct option from the following: (A) Chances of failure through natural methods are very low. (B) Barrier methods are available for both males and females. (C) 'Nirodh' is a popular brand of female condoms. (D) Barrier contraceptives are generally made of copper due to its spermicidal effects. Identify the wrong statement: (A) Active secretion of H $^+$ and K $^-$ ions takes place in DCT. (B) Glomerular filtrate is isotonic in comparison to blood plasma.

(C) Small amount of urea passes from collecting duct to medullary interstitium and enters ascending limb of loop of Henle.

(D) Water reabsorption in PCT takes place with the help of vasopressin.

175. Myelin sheath is derived from:

173.

174.

(A) Neuroglia cells	(B) Schwann cells
(C) Nerve cells	(D) All of these

176. Which of the following statements are correct?(i) The cerebrum wraps around thalamus.(ii) Corpus callosum is characteristic of mammalian brain

(iii) Midbrain and hindbrain together form the brainstem

(iv) Centres for hunger, thirst and temperature control are present in hypothalamus.

- (A) (i) Only (B) (ii) and (iii) only
- (C) (iv) Only (D) All are correct
- 177. Who is known as "father of endocrinology"?(A) Einthoven(B) Thomas Addison
 - (C) Pasteur
 - (D) R.H. Whittaker
- Hormones are _____ (i) _____ chemicals which act as _____ (ii) _____ messengers and are produced in amounts. Fill up the blanks with correct options.

(iii)

(i) (ii)

(A)	Nutrient	Intercellular	trace
(B)	Non-nutrie	Intercellular	trace
	nt		
(C)	Non-nutrie	Intercellular	trace
	nt		
(D)	Nutrient	Intercellular	trace

- 179. Progesterone hormone is secreted by:(A) corpus albicans
 (B) corpus collosum
 (C) corpus luteum in ovaries
 (D) corpus uteri
- **180.** Sertoli cells are involved in:-
 - (A) Respiration
 - (B) Nutrition of sperms
 - (C) Excretion
 - (D) Development of sex organs
- **181.** How many of the following structures contain 46 chromosomes?

Spermatogonia, Secondary spermatocyte, Secondary oocyte, Spermatozoa, Oogonia, Polar body, Primary oocyte, Spermatid

- (A) Four(B) Five(C) Six(D) Three
- 182. Hysterectomy is surgical removal of (A) Uterus
 (B) Mammary glands
 (C)Prostate gland
 (D) Vasdeference
- 183. Match the following secually transmitted diseases column I with their causartive agent column II and select the correct option:
 Column I Column II
 a. Gonorrhoea i. HIV
 - b. syphilis ii. Neisseria c. Genital warts iii. Treponoma d. AIDs iv. HP virus (A) a-iii, b-iv, c-i, d-ii (B) a-iv, b- ii, c-iii, d-i (C) a-iv, b-iii, c-iv, d-i (D) a-ii, b-iii, c-iv, d-i
- 184. Which of the following is not a natural method of contraception?
 (A) Lactational amenorrhoea
 (B) Coitus interruptus
 (C) Periodic abstinence
 (D) Saheli
 185. Which of the following is the correct sequence
- Which of the following is the correct sequence of events in the origin of life?
 I. Formation of protobionts
 II. Synthesis of organic monomers
 III. Synthesis of organic polymers
 IV. Formation of DNA-based genetic systems
 (A) II, III, I, IV
 (B) I, III, II, IV

	(C) III, II, I, IV (D) III, I, II, IV (SECTION-B)		(B) In the case of EcoRI, R represents the genus of the prokaryote from which the enzyme is obtained.
186.	Read the following statements and identify		(C) The linking of the antibiotic-resistance
100.	true (T) and false (F) among them:		gene with the plasmid vector became possible
	(i) T-lymphocytes mediate humoral immune		with enzyme ligase
	response.		(D) The substrate for restriction enzyme is
	(ii) Mucus coating of the epithelium lining		double- stranded DNA.
	respiratory and urogenital tract form physical		
	barrier of the specific immunity.	193.	In gene gun method used to introduce alien
	(iii) Bacteria-infected cells secrete proteins		DNA into host cells, microparticles of
	called interferons which protect non-infected		metal are used.
	cells from further infection.		(A) Copper (B) Zinc
	(iv) An activated exotoxin called toxoid is used		(C) Tungsten or gold (D) Silver
	to induce active immunity to toxin-causing		(c) rungsten of gold (D) silver
	disease.	10.4	
		194.	The process of separation and purification of
	(i) (ii) (iii) (iv)		expressed protein before marketing is called :
	(A) F F F T		(A) Downstream processing
	(B) T F F F		(B) Bioprocessing
	(C) F F F F		(C) Postproduction processing
	(D) T T F F		(D) Upstream processing
187.	Smoking is not associated with increased		(D) Opsitically processing
107.	incidence of cancers in	105	Withink of the full series is an incompared
	(A) Throat (B) Lungs	195.	Which of the following is an incorrect
			statement?
	(C) Large intestine (D) Urinary bladder		(A) Silencing of a gene can be achieved using
100			RNA interference.
188.	A certain patient is suspected to be suffering		(B) Tobacco plants resistant to a nematode
	from acquired immuno deficiency syndrome.		have been developed by the introduction of
	Which diagnostic technique will you		DNA that produces both sense and anti-sense
	recommend for its detection ?		RNA.
	(A)MRI (B) Ultra sound		(C) Bacillus thuringiensis strains have been
	(C) WIDAL (D) ELISA		used for designing biofertilisers.
			(D) Genetically modified (GM) crops can be
189.	The term 'antibiotic' was coined by		produced by recombinant DNA technology.
	(A) Selman Waksman		produced by recombinant brar technology.
	(B) Alexander Fleming	196.	Which of the following is incorrect regarding
	(C) Edward Jenner	170.	the plant <i>Pentadiplandra brazzeana</i> ?
	(D) Louis pasteur		
	(D) Louis pasicui		(A) It is found in West Africa.
100	Which of the following engrance is not used		(B) It produces the protein Brazzein, which is
190.	Which of the following enzymes is not used		2000 times sweeter than sugar.
	while extracting DNA from an organism?		(C) It is a low-calorie sweetener.
	(A) Cellulase		(D) The local people in Africa have patented
	(B) Chitinase		the protein and are using it commercially.
	(C) Lysozyme		- •
	(D) Deoxyribonuclease	197.	The Indian Parliament has recently cleared the
			second amendment of the Bill, which
191.	The primers used in the PCR technique should		takes issues such as patent terms, emergency
	be		provisions, and research and development
	(A) Formed of polypeptide.		initiative.
	(B) Polynucleotide chain tagged with		
	radioisotope.		(A) RTI (D) In dian Patenta
			(B) Indian Patents
	(C) Complementary to the 3'-end sequence of the DNA account to be amplified		(C) Biopiracy
	the DNA segment to be amplified.		(D) Genetic approval
	(D) Complementary to the 5'-end sequence of		
	the DNA segment to be amplified	100	

the DNA segment to be amplified

restriction endonuclease.

Which of the following is an incorrect

(A) The term "chemical knife" is used for

192.

statement?

198. Cultivation of Bt cotton has been much in the news. The prefix "Bt" means :-(A) "Barium – treated" cotton seeds.

(B) "Bigger thread" variety of cotton with batter tensile strength.

(C) Produced by "biotechnology" using restriction enzymes and ligases.

(D) Carrying an endotoxin gene from Bacillus thuringiensis.

199.	A transgenic rice	(Golden rice) has been
	developed for increa	ased content of :-
	(A) Vitamin A	(B) Viamin B1
	(C) Vitamin C	(D) Vitamin D

200. Study the following statements and select the option with incorrect ones.

(i) Hirudin is an anticoagulant produced from transgenic Brassica napus.
(ii) Twenty-five recombinant therapeutics worldwide have been approved for human use.
(iii) Twelve recombinant therapeutics are being marketed in India.
(iv) Bt toxins are extracellular crystalline proteins.
(v) Transgenic food may cause toxicity and produce allergy in human beings.

(A) (ii) and (iv)	(B) (ii) and
(C) (iii) and (iv)	(D) (ii) only