

CLASS: XIIth DATE:

SUBJECT: MATHS

**DPP NO.: 9** 

## Topic:- vector algebra

| TOPIC VECTOR ALGEBRA                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                            |                                                                                    |                                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| 1.                                                                                                                                                                                                                                                                                                                                                                 | f $\vec{a}$ and $\vec{b}$ are unit vectors and $	heta$ is the angle between them then $\left \frac{\vec{a}-\vec{b}}{2}\right $ , is      |                                                            |                                                                                    |                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                    | a) $\sin \frac{\theta}{2}$                                                                                                               | b) $\sin \theta$                                           | c) $2\sin\theta$                                                                   | d) $\sin 2\theta$                                                               |  |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                 | If $\vec{a}$ and $\vec{b}$ are two nor<br>a) $x = 0$ , but $y$ is not $x = 0$ , $y = 0$                                                  | n-collinear vectors and <i>x</i><br>necessarily zero       | $\vec{a} + y \vec{b} = 0$<br>b) $y = 0$ , but $x$ is not n<br>d) None of the above | ecessarily zero                                                                 |  |  |  |
| 3.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                            |                                                                                    |                                                                                 |  |  |  |
| $\overrightarrow{AD} = -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ . The side $AD$ is rotated by an acute angle $\alpha$ in the plane of the parallelogram so                                                                                                                                                                                       |                                                                                                                                          |                                                            |                                                                                    |                                                                                 |  |  |  |
| that $AD$ becomes $AD'$ . If $AD'$ makes a right angle with the side $AB$ , then the cosine of the angle $\alpha$ is given by                                                                                                                                                                                                                                      |                                                                                                                                          |                                                            |                                                                                    |                                                                                 |  |  |  |
| 8.,,                                                                                                                                                                                                                                                                                                                                                               | a) $\frac{8}{9}$                                                                                                                         | b) $\frac{\sqrt{17}}{9}$                                   | c) $\frac{1}{9}$                                                                   | $d)\frac{4\sqrt{5}}{9}$                                                         |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          | etion of the vector $x\hat{\mathbf{i}} + \hat{\mathbf{j}}$ | $+\hat{\mathbf{k}}$ on the vector $2\hat{\mathbf{i}} - \hat{\mathbf{j}}$           | +5 <b>k</b> is                                                                  |  |  |  |
| $\frac{1}{\sqrt{30}}$                                                                                                                                                                                                                                                                                                                                              | then the value of $x$ is                                                                                                                 |                                                            |                                                                                    |                                                                                 |  |  |  |
| V                                                                                                                                                                                                                                                                                                                                                                  | a) $-3/2$                                                                                                                                | b) 6                                                       | c) -6                                                                              | d)3                                                                             |  |  |  |
| 5. If $\vec{\mathbf{a}} = -\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ , $\vec{\mathbf{b}} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = -2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ , then the angle between $2\vec{\mathbf{a}} - \vec{\mathbf{c}}$ and $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ is |                                                                                                                                          |                                                            |                                                                                    |                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                    | a) $\frac{\pi}{4}$                                                                                                                       | b) $\frac{\pi}{3}$                                         | c) $\frac{\pi}{2}$                                                                 | $d)\frac{3\pi}{2}$                                                              |  |  |  |
| 6. Let $\vec{a}$ , $\vec{b}$ , $\vec{c}$ three non-zero vectors such that no two of which are collinear and the vector $\vec{a} + \vec{b}$ is collinear with $\vec{c}$ and $\vec{b} + \vec{c}$ is collinear with $\vec{a}$ . Then, $\vec{a} + \vec{b} + \vec{c} =$                                                                                                 |                                                                                                                                          |                                                            |                                                                                    |                                                                                 |  |  |  |
| COII                                                                                                                                                                                                                                                                                                                                                               | a) $\vec{a}$                                                                                                                             | b) $\vec{b}$                                               | c) $\vec{c}$                                                                       | d) $\vec{0}$                                                                    |  |  |  |
| 7.                                                                                                                                                                                                                                                                                                                                                                 | The value of $[\vec{a} \vec{b} + \vec{c}]$                                                                                               | $\vec{a} + \vec{b} + \vec{c}$ is                           |                                                                                    |                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                    | a) $[\vec{a}\ \vec{b}\ \vec{c}]$                                                                                                         | b) 0                                                       | c) $2[\vec{a}\ \vec{b}\ \vec{c}]$                                                  | $\mathbf{d})\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$ |  |  |  |
| 8.                                                                                                                                                                                                                                                                                                                                                                 | If the points with position vectors $60\hat{i} + 3\hat{j}$ , $40\hat{i} - 8\hat{j}$ and $a\hat{i} - 52\hat{j}$ are collinear, then $a =$ |                                                            |                                                                                    |                                                                                 |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                  | a) −40                                                                                                                                   | b) 40                                                      | c) 20                                                                              | d) 30 perpendicular to $\vec{a}$ and $\vec{c}$                                  |  |  |  |
| 9.                                                                                                                                                                                                                                                                                                                                                                 | Let $a = 21 + 1 + K$ , $b =$                                                                                                             | = 1 +2 <b>j — K</b> and a unit ve                          | ctor <b>c</b> be copianar. If <b>c</b> is                                          | perpendicular to <b>a</b> and <b>c</b>                                          |  |  |  |

is equal to

| a) | $\pm \frac{1}{\sqrt{2}}($ | – i̇̀ + | k)  |
|----|---------------------------|---------|-----|
| uj | <u> </u>                  | , '     | ••) |

b) 
$$\pm \frac{1}{\sqrt{3}}(-\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$$
 c)  $\pm \frac{1}{\sqrt{5}}(\hat{\mathbf{i}} - 2\hat{\mathbf{j}})$  d)  $\pm \frac{1}{\sqrt{3}}(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$ 

c) 
$$\pm \frac{1}{\sqrt{5}} (\hat{\mathbf{i}} - 2 \hat{\mathbf{j}})$$

d) 
$$\pm \frac{1}{\sqrt{3}}(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$$

10. If the vectors  $\vec{a} = 2\hat{i} + \hat{j} + 4\hat{k}$ ,  $\vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$  and  $\vec{c} = 2\hat{i} - 3\hat{j} - \lambda\hat{k}$  are coplanar, then the value of  $\lambda$  is equal to

b) 1

c) 3

d) -1

11. The vectors

$$\vec{u} = (al + a_1l_1)\hat{i} + (am + a_1m_1)\hat{j} + (an + a_1n_1)\hat{k},$$

$$\vec{v} = (bl + b_1 l_1)\hat{i} + (bm + b_1 m_1)\hat{j} + (bn + b_1 n_1)\hat{k},$$

$$\vec{w} = (cl + c_1l_1)\hat{i} + (cm + c_1m_1)\hat{j} + (cn + c_1n_1)\hat{k}$$

- a) Form an equilateral triangle
- b) Are coplanar
- c) Are collinear
- d) Are mutually perpendicular

12. If A, B, C, D are any four points in space, then  $|A\vec{B} \times \vec{C}D + B\vec{C} \times \vec{A}D + C\vec{A} \times \vec{B}D|$  is equal to

b) 4Δ

d)  $5\Delta$ 

13. If  $\vec{a}$  lies in the plane of vectors  $\vec{b}$  and  $\vec{c}$ , then which of the following is correct?

a) 
$$\left[\vec{a}\vec{b}\vec{c}\right] = 0$$

b) 
$$\left[\vec{a}\vec{b}\vec{c}\right] = 1$$

c) 
$$[\vec{a}\vec{b}\vec{c}] = 3$$

d)  $[\vec{b}\vec{c}\vec{a}] = 1$ 

14. What is the value of  $(\vec{d} + \vec{a}) \cdot [\vec{a} \times \{\vec{b} \times (\vec{c} \times \vec{d})\}]$ ?

a) 
$$(\vec{\mathbf{d}} \cdot \vec{\mathbf{a}}) \cdot [\vec{\mathbf{b}} \vec{\mathbf{c}} \vec{\mathbf{d}}]$$

a) 
$$(\vec{\mathbf{d}} \cdot \vec{\mathbf{a}}) \cdot [\vec{\mathbf{b}} \vec{\mathbf{c}} \vec{\mathbf{d}}]$$
 b)  $(\vec{\mathbf{a}} \cdot \vec{\mathbf{d}}) \cdot [\vec{\mathbf{b}} \vec{\mathbf{c}} \vec{\mathbf{d}}]$  c)  $(\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) \cdot [\vec{\mathbf{a}} \vec{\mathbf{c}} \vec{\mathbf{d}}]$  d)  $(\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) \cdot [\vec{\mathbf{a}} \vec{\mathbf{d}} \vec{\mathbf{c}}]$ 

c) 
$$(\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) \cdot [\vec{\mathbf{a}} \vec{\mathbf{c}} \vec{\mathbf{d}}]$$

15. A parallelogram is constructed on the vectors  $\vec{a} = 3\vec{\alpha} - \vec{\beta}$ ,  $\vec{b} = \vec{\alpha} + 3\vec{\beta}$ . If  $|\vec{\alpha}| = |\vec{\beta}| = 2$  and the angle between  $\vec{\alpha}$  and  $\vec{\beta}$  is  $\frac{\pi}{3}$ , then the angle of a diagonal of the parallelogram are

a) 
$$4\sqrt{5}$$
,  $4\sqrt{3}$ 

b) 
$$4\sqrt{3}$$
,  $4\sqrt{7}$ 

c) 
$$4\sqrt{7}$$
,  $4\sqrt{5}$ 

d) None of these

16. If the vectors  $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ ,  $-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ ,  $\lambda \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$  are linearly dependent, then the value of  $\lambda$ is equal to

d)3

17. For any vector  $\vec{\mathbf{a}}$ , the value of  $(\vec{\mathbf{a}} \times \hat{\mathbf{i}})^2 + (\vec{\mathbf{a}} \times \hat{\mathbf{j}})^2 + (\vec{\mathbf{a}} \times \hat{\mathbf{k}})^2$  is equal to a)  $4\vec{\mathbf{a}}^2$  b)  $2\vec{\mathbf{a}}^2$  c)  $\vec{\mathbf{a}}^2$ 

a) 
$$4\vec{a}^2$$

b) 
$$2\vec{a}^2$$

c) 
$$\vec{a}^2$$

d) $3\vec{a}^{2}$ 

18. If  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = 2\hat{i} - 4\hat{k}$ ,  $\vec{c} = \hat{i} + \lambda\hat{j} + 3\hat{k}$  are coplanar, then the value of  $\lambda$  is

a) 
$$\frac{5}{2}$$

b)
$$\frac{3}{5}$$

c) 
$$\frac{7}{3}$$

d) None of these

19. If the position vectors of *P* and *Q* are  $\hat{i} + 3\hat{j} - 7\hat{k}$  and  $5\hat{i} - 2\hat{j} + 4\hat{k}$  then the cosine of the angle between  $\vec{P}Q$  and y-axis is

- a)  $\frac{5}{\sqrt{162}}$
- b)  $\frac{4}{\sqrt{162}}$
- c)  $-\frac{5}{\sqrt{162}}$  d)  $\frac{11}{\sqrt{162}}$

20. The value of  $\hat{a}'$  so that volume of parallelopiped formed by  $\hat{i} + a\hat{j} + \hat{k}$ ,  $\hat{j} + a\hat{k}$  and  $a\hat{i} + \hat{k}$ becomes minimum, is

- a) -3
- b)3

- c)  $1/\sqrt{3}$
- d) $\sqrt{3}$

