CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- vector algebra

1. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them then $\left|\frac{\vec{a}-\vec{b}}{2}\right|$, is
a) $\sin \frac{\theta}{2}$
b) $\sin \theta$
c) $2 \sin \theta$
d) $\sin 2 \theta$
2. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two non-collinear vectors and $x \overrightarrow{\mathbf{a}}+y \overrightarrow{\mathbf{b}}=0$
a) $x=0$, but y is not necessarily zero
b) $y=0$, but x is not necessarily zero
c) $x=0, y=0$
d) None of the above
3. Two adjacent sides of a parallelogram $A B C D$ are given by $\overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angle α is given by
a) $\frac{8}{9}$
b) $\frac{\sqrt{17}}{9}$
c) $\frac{1}{9}$
d) $\frac{4 \sqrt{5}}{9}$
4. If the scalar projection of the vector $x \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ on the vector $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ is $\frac{1}{\sqrt{30}}$ then the value of x is
a) $-3 / 2$
b) 6
c) -6
d) 3
5. If $\overrightarrow{\mathbf{a}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, then the angle between $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{3 \pi}{2}$
6. Let $\vec{a}, \vec{b}, \vec{c}$ three non-zero vectors such that no two of which are collinear and the vector $\vec{a}+\vec{b}$ is collinear with \vec{c} and $\vec{b}+\vec{c}$ is collinear with \vec{a}. Then, $\vec{a}+\vec{b}+\vec{c}=$
a) \vec{a}
b) \vec{b}
c) \vec{c}
d) $\overrightarrow{0}$
7. The value of $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]$ is
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
b) 0
c) $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
8. If the points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}$ and $a \hat{i}-52 \hat{j}$ are collinear, then $a=$
a) -40
b) 40
c) 20
d) 30
9. Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and a unit vector $\overrightarrow{\mathbf{c}}$ be coplanar. If $\overrightarrow{\mathbf{c}}$ is perpendicular to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ is equal to
a) $\pm \frac{1}{\sqrt{2}}(-\hat{\mathbf{j}}+\hat{\mathbf{k}})$
b) $\pm \frac{1}{\sqrt{3}}(-\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
c) $\pm \frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}})$
d) $\pm \frac{1}{\sqrt{3}}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
10. If the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}$ are coplanar, then the value of λ is equal to
a) 2
b) 1
c) 3
d) -1
11. The vectors
$\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$,
$\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$,
$\vec{w}=\left(c l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}$
a) Form an equilateral triangle
b) Are coplanar
c) Are collinear
d) Are mutually perpendicular
12. If A, B, C, D are any four points in space, then $|A \vec{B} \times \vec{C} D+B \vec{C} \times \vec{A} D+C \vec{A} \times \vec{B} D|$ is equal to
a) 2Δ
b) 4Δ
c) 3Δ
d) 5Δ
13. If \vec{a} lies in the plane of vectors \vec{b} and \vec{c}, then which of the following is correct?
a) $[\vec{a} \vec{b} \vec{c}]=0$
b) $[\vec{a} \vec{b} \vec{c}]=1$
c) $[\vec{a} \vec{b} \vec{c}]=3$
d) $[\vec{b} \vec{c} \vec{a}]=1$
14. What is the value of $(\overrightarrow{\mathbf{d}}+\overrightarrow{\mathbf{a}}] \cdot[\overrightarrow{\mathbf{a}} \times\{\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})\}]$?
a) $(\overrightarrow{\mathbf{d}} \cdot \overrightarrow{\mathbf{a}}) \cdot[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
b) $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}) \cdot[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
c) $(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}) \cdot[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
d) $(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}) \cdot[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{c}}]$
15. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$. If $|\vec{\alpha}|=|\vec{\beta}|=2$ and the angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then the angle of a diagonal of the parallelogram are
a) $4 \sqrt{5}, 4 \sqrt{3}$
b) $4 \sqrt{3}, 4 \sqrt{7}$
c) $4 \sqrt{7}, 4 \sqrt{5}$
d) None of these
16. If the vectors $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}},-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \lambda \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ are linearly dependent, then the value of λ is equal to
a) 0
b) 1
c) 2
d) 3
17. For any vector $\overrightarrow{\mathbf{a}}$, the value of $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})^{2}+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^{2}+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^{2}$ is equal to
a) $4 \overrightarrow{\mathbf{a}}^{2}$
b) $2 \overrightarrow{\mathbf{a}}^{2}$
c) $\overrightarrow{\mathbf{a}}^{2}$
d) $3 \overrightarrow{\mathbf{a}}^{2}$
18. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are coplanar, then the value of λ is
a) $\frac{5}{2}$
b) $\frac{3}{5}$
c) $\frac{7}{3}$
d) None of these
19. If the position vectors of P and Q are $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$ then cosine of the angle between $\vec{P} Q$ and y-axis is
a) $\frac{5}{\sqrt{162}}$
b) $\frac{4}{\sqrt{162}}$
c) $-\frac{5}{\sqrt{162}}$
d) $\frac{11}{\sqrt{162}}$
20. The value of ' a ' so that volume of parallelopiped formed by $\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}+\hat{\mathbf{k}}$ becomes minimum, is
a) -3
b) 3
c) $1 / \sqrt{3}$
d) $\sqrt{3}$

