CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- vector algebra

1. The point of intersection of $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}$ is
a) $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $3 \hat{\mathbf{i}}-\hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
d) None of these
2. If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation, $\vec{r} \times \vec{a}=\vec{b}$ is given by
a) $\vec{r}=x \vec{a}+\frac{\vec{a} \times \vec{b}}{|\vec{a}|^{2}}$
b) $\vec{r}=x \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
c) $\vec{r}=x(\vec{a} \times \vec{b})$
d) $\vec{r}=x(\vec{b} \times \vec{a})$
3. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices of a triangle $A B C$, then a unit vector perpendicular to its plane is
a) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ b) $\frac{\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
c) $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
d) None of these
4. If $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ are three non-coplanar vectors, then $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}) \cdot[(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}) \times(\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}})]$ equals
a) 0
b) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$
c) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{v}}$
d) $3 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$
5. The resultant of $(\overrightarrow{\mathbf{p}}-2 \overrightarrow{\mathbf{q}})$ where. $\overrightarrow{\mathbf{p}}=7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\dot{\mathbf{k}}}$ and $\overrightarrow{\mathbf{q}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ is
a) $\sqrt{29}$
b) 4
c) $\sqrt{62}-2 \sqrt{35}$
d) $\sqrt{66}$
6. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $m=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, then
a) $m<0$
b) $m>0$
c) $m=0$
d) $m=3$
7. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}$ and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}}$, then $\lambda+\mu$ is equal to
a) 0
b) 1
c) 2
d) 3
8. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}, \vec{c}=3 \hat{i}+\hat{j}$ and $\vec{a}+t \vec{b}$ is normal to vector \vec{c}, then the vector of t is
a) 8
b) 4
c) 6
d) 2
9. If \vec{a}, \vec{b} represent the diagonals of a rhombus, then
a) $\vec{a} \times \vec{b}=\overrightarrow{0}$
b) $\vec{a} \cdot \vec{b}=\overrightarrow{0}$
c) $\vec{a} \times \vec{b}=1$
d) $\vec{a} \times \vec{b}=\vec{a}$
10. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \times \vec{b}=2 \vec{a} \times \vec{c},|\vec{a}|=|\vec{c}|=1$ and $|\vec{b}|=4$. If the angle between \vec{b} and \vec{c} is $\cos ^{-1}\left(\frac{1}{4}\right)$, then $\vec{b}-2 \vec{c}$ is equal to
a) $\pm 4 \vec{a}$
b) $\pm 3 \vec{a}$
c) $\pm 5 \vec{a}$
d) $\pm 4 \vec{a}$
11. $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{k} \times \hat{i})+\hat{k} \cdot(\hat{i} \times \hat{j})=$
a) 1
b) 3
c) -3
d) 0
12. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$, then the angle between the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, is
a) 30°
b) 60°
c) 90°
d) 0°
13. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, then
a) $\vec{b}=\vec{c}$
b) $\vec{a} \perp \vec{b}, \vec{c}$
c) $\vec{a} \perp(\vec{b}-\vec{c})$
d) Either $\vec{a} \perp(\vec{b}-\vec{c})$ or $\vec{b}=\vec{c}$
14. The length of longer diagonal of the parallelogram constructed on $5 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$. If it is given that $|\overrightarrow{\mathbf{a}}|=2 \sqrt{2},|\overrightarrow{\mathbf{b}}|=3$ and angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{4}$, is
a) 15
b) $\sqrt{113}$
c) $\sqrt{593}$
d) $\sqrt{369}$
15. If the projection of the vector $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ is $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ and if $3 \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{6}$
16. The unit vector perpendicular to the plane passing through points $P(\hat{i}-\hat{j}+2 \hat{k}), Q(2 \hat{i}-\hat{k})$ and $R(2 \hat{j}+\hat{k})$ is
a) $2 \hat{i}+\hat{j}+\hat{k}$
b) $\sqrt{6}(2 \hat{i}+\hat{j}+\hat{k})$
c) $\frac{1}{\sqrt{6}}(2 \hat{i}+\hat{j}+\hat{k})$
d) $\frac{1}{6}(2 \hat{i}+\hat{j}+\hat{k})$
17. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}},, \overrightarrow{\mathbf{c}}$ be three non-zero vectors such that no two of these are collinear. If the vector $\overrightarrow{\mathbf{a}}+2$ $\overrightarrow{\mathbf{b}}$ is collinear with $\overrightarrow{\mathbf{c}}$, then $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+6 \overrightarrow{\mathbf{c}}$ equals
a) $\lambda \overrightarrow{\mathbf{a}}(\lambda \neq 0$, a scalar $)$
b) $\lambda \overrightarrow{\mathbf{b}}(\lambda \neq 0$, a scalar $)$
c) $\lambda \overrightarrow{\mathbf{c}}(\lambda \neq 0$, a scalar $)$
d) 0
18. Let $\overrightarrow{\mathbf{u}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{v}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{w}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$. If $\hat{\mathbf{n}}$ is a unit vector such that $\overrightarrow{\mathbf{u}} . \hat{\mathbf{n}}=0$ and $\overrightarrow{\mathbf{v}} . \hat{\mathbf{n}}=0$, then $|\vec{w} \cdot \hat{\mathbf{n}}|$ is equal to
a) 0
b) 1
c) 2
d) 3
19. If position vector of point A is $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and any point $P(\overrightarrow{\mathbf{a}})$ divides $\overrightarrow{\boldsymbol{A B}}$ in the ratio of $2: 3$, then position vector of B is
a) $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
b) $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{a}}$
c) $\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{b}}$
20. If $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{C}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}$, evaluate t, if the vector $(\overrightarrow{\mathbf{A}}+t \overrightarrow{\mathbf{B}})$ and $\overrightarrow{\mathbf{C}}$ are mutually perpendicular.
a) 5
b) 4
c) 1
d) 2
