

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 7

Topic :- vector algebra

1. Three vectors $7\hat{i} - 11\hat{j} + \hat{k}$, $5\hat{i} + 3\hat{j} - 2\hat{k}$ and $12\hat{i} - 8\hat{j} - \hat{k}$ from a) an equilateral triangle b) an isosceles triangle c) a right angled triangle d) Collinear

2. If $|\vec{a}| = 2$, $|\vec{b}| = 3$, and \vec{a} , \vec{b} are mutually perpendicular, then the area of triangle whose vertices are $\vec{0}$, $\vec{a} + \vec{b}$, $\vec{a} - \vec{b}$ is

a) 5 b) 1 c) 6 d) 8

3. If *V* is the volume of the parallelopiped having three coterminus edges as \vec{a}, \vec{b} and \vec{c} , then the volume of the parallelopiped having three coterminus edges as

$\vec{B} = (\vec{a} \cdot \vec{h})\vec{a} + (\vec{h} \cdot \vec{h})\vec{h} + (\vec{h} \cdot \vec{c})\vec{c}$	
$\vec{\gamma} = (\vec{a} \cdot \vec{c})\vec{a} + (\vec{b} \cdot \vec{c})\vec{b} + (\vec{c} \cdot \vec{c})\vec{c}$, is	
a) V^3 b) $3V$ c) V^2 c)2V

4. The unit vectors orthogonal to the vector $-\hat{i}+2\hat{j}+2\hat{k}$ and making equal angles with the *X* and *Y* axes is (are)

a) $\pm \frac{1}{3}(2\hat{i} + 2\hat{j} - \hat{k})$ b) $\pm \frac{1}{3}(\hat{i} + \hat{j} - \hat{k})$ c) $\pm \frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k})$ d) None of these

5. The unit vector perpendicular to vectors $\hat{i} - \hat{j}$ and $\hat{i} + \hat{j}$ forming a right handed system is

a)
$$\hat{k}$$
 b) $-\hat{k}$ c) $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$ d) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$

6. Given, $\vec{\mathbf{p}} = 3\hat{\hat{\mathbf{i}}} + 2\hat{\hat{\mathbf{j}}} + 4\hat{\mathbf{k}}$, $\vec{\mathbf{a}} = \hat{\hat{\mathbf{i}}} + \hat{\hat{\mathbf{j}}}$, $\vec{\mathbf{b}} = \hat{\hat{\mathbf{j}}} + \hat{\mathbf{k}}$, $\vec{\mathbf{c}} = \hat{\hat{\mathbf{i}}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{p}} = x\vec{\mathbf{a}} + y\vec{\mathbf{b}} + z\vec{\mathbf{c}}$, then *x*, *y*, *z* are respectively

a) $\frac{3}{2}, \frac{1}{2}, \frac{5}{2}$ b) $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ c) $\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$ d) $\frac{1}{2}, \frac{5}{2}, \frac{3}{2}$

7. If *S* is the circumcentre, *O* is the orthocentre of $\triangle ABC$, then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}$ is equal to a) \overrightarrow{SO} b) 2 \overrightarrow{SO} c) \overrightarrow{OS} d) 2 \overrightarrow{OS}

8. If \vec{a} and \vec{b} are two vectors such that $\vec{a}.\vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$, then a) $\vec{a} || \vec{b}$ b) $\vec{a} \perp \vec{b}$ c)Either \vec{a} and \vec{b} is a null vector d)None of these 9. If a tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1), B(2, 1, 3) and C(-1, 1, 2). Then, the angle between the faces *OAB* and *ABC* will be

a) $\cos^{-1}\left(\frac{19}{35}\right)$ b) $\cos^{-1}\left(\frac{17}{31}\right)$ c) 30° d) 90°

- 10. If \vec{a} and \vec{b} are vectors such that the $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then the angle between \vec{a} and \vec{b} is a) 120° b) 60° c) 90° d) 30°
- 11. If \vec{a} and \vec{b} are not perpendicular to each other and $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$, $\vec{r}.\vec{c} = 0$, then \vec{r} is equal to a) $\vec{a} \vec{c}$
 - b) $\vec{b} + x \vec{a}$ for all scalars x c) $\vec{b} - \frac{(\vec{b}.\vec{c})}{(\vec{a}.\vec{c})}\vec{a}$ d) None of these

12. Let $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ be the unit vectors such that $\vec{\alpha}$ and $\vec{\beta}$ are mutually perpendicular and $\vec{\gamma}$ is equally inclined to $\vec{\alpha}$ and $\vec{\beta}$ at an angle θ . If $\vec{\gamma} = x\vec{\alpha} + y\vec{\beta} + z(\vec{\alpha} \times \vec{\beta})$, then which one of the following is incorrect?

a) $z^2 = 1 - 2x^2$ b) $z^2 = 1 - 2y^2$ c) $z^2 = 1 - x^2 - y^2$ d) $x^2 + y^2 = 1$

13. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then a) $(\vec{a} - \vec{d}) = \lambda(\vec{b} - \vec{c})$ b) $(\vec{a} + \vec{d}) = \lambda(\vec{b} + \vec{c})$ c) $(\vec{a} - \vec{b}) = \lambda(\vec{c} + \vec{d})$ d) $(\vec{a} + \vec{b}) = \lambda(\vec{c} - \vec{d})$ 14. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar mutually perpendicular unit vectors, then $[\vec{a}\vec{b}\vec{c}]$, is a) +1 b)0 c) −2 d)2 15. If *P*,*Q*,*R* and *S* are four points in space, then $|\overrightarrow{PQ} \times \overrightarrow{RS} + \overrightarrow{QR} \times \overrightarrow{SP} + \overrightarrow{RS} \times \overrightarrow{QS}| = k$ (area of ΔPOR). The value of *k* is a) 0 b)2 c) 4 d)3 16. In a $\triangle ABC$, if $\vec{A}B = 3\hat{i} + 4\hat{k}$, $\vec{A}C = 5\hat{i} + 2\hat{j} + 4\hat{k}$, then the length of median through *A*, is c) $5\sqrt{2}$ a) $3\sqrt{2}$ b) $6\sqrt{2}$ $d\sqrt{33}$ 17. The vectors $\overrightarrow{AB} = 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 5\hat{j} + 2\hat{k}$ are the sides of a triangle *ABC*. The length of the median through *A* is b) $2\sqrt{5}$ units a) $\sqrt{13}$ units c) 5 units d) 10 units 18. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and $(\vec{a} - \lambda \vec{b}) \cdot (\vec{b} - 2\vec{c}) \times (\vec{c} + 2\vec{a}) = 0$, then λ is equal to b)1/4 c) 0 d) -1/4a) 1 19. If \vec{a} is perpendicular to \vec{b} and \vec{r} is a non-zero vector such that, $p\vec{r} + (\vec{r}.\vec{b})\vec{a} = \vec{c}$, then $\vec{r} =$

a)
$$\frac{\vec{c}}{p} - \frac{(\vec{b}.\vec{c})\vec{a}}{p^2}$$
 b) $\frac{\vec{a}}{p} - \frac{(\vec{c}.\vec{a})\vec{b}}{p^2}$ c) $\frac{\vec{b}}{p} - \frac{(\vec{a}.\vec{b})\vec{c}}{p^2}$ d) $\frac{\vec{c}}{p^2} - \frac{(\vec{b}.\vec{c})\vec{a}}{p}$

20. Constant forces $\vec{P}_1 = \hat{i} - \hat{j} + \hat{k}$, $\vec{P}_2 = -\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{P}_3 = \hat{j} - \hat{k}$ act on a particle at point *A*. The work done when the particle is displaced from the point *A* to *B* where $\vec{A} = 4\hat{i} - 3\hat{j} - 2\hat{k}$ and $\vec{B} = 6\hat{i} + \hat{j} - 3\hat{k}$ is a) 3 b) 9 c) 20 d) None of these

