CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- VECTOR ALGEBRA

1. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three non-coplanar vectors and $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{r}}$ constitute the corresponding reciprocal system of vectors then for any arbitrary vector $\vec{\alpha}$
a) $\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{a}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{c}}$
b) $\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{p}}) \overrightarrow{\mathbf{p}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{q}}) \overrightarrow{\mathbf{q}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{r}}) \mathbf{r}$
c) $\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{p}}) \overrightarrow{\mathbf{a}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{q}}) \overrightarrow{\mathbf{b}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{c}}$
d) None of the above
2. The vector $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is coplanar with the vectors
a) $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{c}}$
d) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$
3. If $\overrightarrow{\mathbf{b}}$ is a unit vector, then $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ is
a) $|\overrightarrow{\mathbf{a}}|^{2} \overrightarrow{\mathbf{b}}$
b) $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}| \overrightarrow{\mathbf{a}}$
c) $\overrightarrow{\mathbf{a}}$
d) $\overrightarrow{\mathbf{b}}$
4. If $\sum_{i=1}^{n}\left|\overrightarrow{\mathbf{a}_{i}}\right|=\overrightarrow{\mathbf{0}}$, where $\left|\overrightarrow{\mathbf{a}_{i}}\right|=1 \forall i$, then the value of $\sum_{1 \leq i<} \sum_{j \leq n} \overrightarrow{\mathbf{a}_{i}} \cdot \overrightarrow{\mathbf{a}_{j}}$ is
a) n^{2}
b) $-n^{2}$
c) n
d) $-\frac{n}{2}$
5. If the vector $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ is perpendicular to $c \hat{\mathbf{k}}-\hat{\mathbf{j}}+6 \hat{\mathbf{i}}$ then c is equal to
a) 3
b) 4
c) 5
d) 6
6. If $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$, then
a) $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$
b) $\overrightarrow{\mathbf{a}}|\mid \overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{b}}=\overrightarrow{\boldsymbol{0}}$
d) $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$ or $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$
7. If $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are adjacent side of a parallelogram, then the lengths of its diagonals are
a) $7, \sqrt{69}$
b) $6, \sqrt{59}$
c) $5, \sqrt{65}$
d) $5, \sqrt{55}$
8. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0$. Which of the following is correct?
a) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
c) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
d) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are mutually perpendicular
9. If G is the centre of a regular hexagon $A B C D E F$, then $\vec{A} B+\vec{A} C+\vec{A} D+\vec{A} E+\vec{A} F=$
a) $3 \vec{A} G$
b) $2 \vec{A} G$
c) $6 \vec{A} G$
d) $4 \vec{A} G$
10. I. Two non-zero. Non-collinear vectors are linearly independent.
II. Any three coplanar vectors are linearly dependent. Which of the above statements is /are true?
a) Only I
b) Only II
c) Both I and II
d) Neither I nor II
11. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then
$[2 \vec{a}-3 \vec{b} 7 \vec{b}-9 \vec{c} 12 \vec{c}-23 \vec{a}]$ is equal ro
a) 0
b) $1 / 2$
c) 24
d) 32
12. $[\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$, then
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=1$
b) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=-1$
d) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are mutually perpendicular
13. If $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$ and $|\overrightarrow{\mathbf{a}}|=\sqrt{37},|\overrightarrow{\mathbf{b}}|=3,|\overrightarrow{\mathbf{c}}|=4$, then the angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$
a) 30°
b) 45°
c) 60°
d) 90°
14. A unit vector coplanar with $\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, and perpendicular to $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\left(\frac{\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{2}}\right)$
b) $\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}\right)$
c) $\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}}{\sqrt{6}}\right)$
d) $\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{6}}\right)$
15. The projection of the vector $\hat{i}+\hat{j}+\hat{k}$ along the vector of \hat{j}, is
a) 1
b) 0
c) 2
d) -1
16. Volume of the parallelopiped having vertices at $O \equiv(0,0,0), A \equiv(2,-2,4)$, $B \equiv(5,-4,4)$ and $C \equiv(1,-2,4)$
a) 5 cu units
b) 10 cu units
c) 15 cu units
d) 20 cu units
17. The area of parallelogram constructed on the vectors $\vec{a}=\vec{p}+2 \vec{q}$ and $\vec{b}=2 \vec{p}+\vec{q}$, where \vec{p} and \vec{q} are unit vectors forming an angle of 30° is
a) $3 / 2$
b) $5 / 2$
c) $7 / 2$
d) None of these
18. If \vec{a} is a vector perpendicular to vectors $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $c=-2 \hat{i}+4 \hat{j}+\hat{k}$ and satisfies the condition $\vec{a} \cdot(\hat{i}-2 \hat{j}+\hat{k})=-6$, then $\vec{a}=$
a) $5 \hat{i}+\frac{7}{2} \hat{j}-4 \hat{k}$
b) $10 \hat{i}+7 \hat{j}-8 \hat{k}$
c) $5 \hat{i}-\frac{7}{2} \hat{j}+4 \hat{k}$
d) None of these
19. The projection of $\overrightarrow{\mathbf{a}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ on $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\frac{8}{\sqrt{35}}$
b) $\frac{9}{\sqrt{39}}$
c) $\frac{8}{\sqrt{14}}$
d) $\sqrt{14}$
20. Let $A B C D E F$ be a regular hexagon and $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{C D}}=\overrightarrow{\mathbf{c}}$, then $\overrightarrow{\mathbf{A E}}$ is equal to
a) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
c) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}}$
