

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 6

Topic:- vector algebra

1.	If $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ constitute the corresponding reciprocal system
of v	vectors then for any arbitrary vector \vec{lpha}

a)
$$\vec{\alpha} = (\vec{\alpha} \cdot \vec{a})\vec{a} + (\vec{\alpha} \cdot \vec{b})\vec{b} + (\vec{\alpha} \cdot \vec{c})\vec{c}$$

b)
$$\vec{\alpha} = (\vec{\alpha} \cdot \vec{p})\vec{p} + (\vec{\alpha} \cdot \vec{q})\vec{q} + (\vec{\alpha} \cdot \vec{r})r$$

c)
$$\vec{\alpha} = (\vec{\alpha} \cdot \vec{p})\vec{a} + (\vec{\alpha} \cdot \vec{q})\vec{b} + (\vec{\alpha} \cdot \vec{r})\vec{c}$$

d) None of the above

2. The vector $\vec{a} \times (\vec{b} \times \vec{c})$ is coplanar with the vectors

a)
$$\vec{\mathbf{b}}$$
, $\vec{\mathbf{c}}$

b)
$$\vec{a}$$
, \vec{b}

c)
$$\vec{a}$$
, \vec{c}

d) \vec{a} , \vec{b} , \vec{c}

3. If \vec{b} is a unit vector, then $(\vec{a} \cdot \vec{b})\vec{b} + \vec{b} \times (\vec{a} \times \vec{b})$ is

a)
$$|\vec{\mathbf{a}}|^2 \vec{\mathbf{b}}$$

b)
$$|\vec{a} \cdot \vec{b}| \vec{a}$$

c)
$$\vec{a}$$

 $d)\vec{\mathbf{b}}$

4. If $\sum_{i=1}^{n} |\overrightarrow{\mathbf{a}_i}| = \overrightarrow{\mathbf{0}}$, where $|\overrightarrow{\mathbf{a}_i}| = \mathbf{1} \forall i$, then the value of $\sum_{1 \le i < i} \sum_{j \le n} \overrightarrow{\mathbf{a}_i} \cdot \overrightarrow{\mathbf{a}_j}$ is

a)
$$n^2$$

b)
$$-n^2$$

d)
$$-\frac{n}{2}$$

5. If the vector $3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ is perpendicular to $c\hat{\mathbf{k}} - \hat{\mathbf{j}} + 6\hat{\mathbf{i}}$ then c is equal to

6. If $\vec{a} \times \vec{b} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 0$, then

a)
$$\vec{a} \perp \vec{b}$$

b)
$$\vec{a}||\vec{b}|$$

c)
$$\vec{\mathbf{a}} = \vec{\mathbf{0}}$$
 and $\vec{\mathbf{b}} = \vec{\mathbf{0}}$

d)
$$\vec{\mathbf{a}} = \vec{\mathbf{0}}$$
 or $\vec{\mathbf{b}} = \vec{\mathbf{0}}$

7. If $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ are adjacent side of a parallelogram, then the lengths of its diagonals are

a)
$$7,\sqrt{69}$$

b)
$$6,\sqrt{59}$$

c)
$$5,\sqrt{65}$$

d)
$$5,\sqrt{55}$$

8. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$. Which of the following is correct?

a)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{0}$$

b)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$$

c)
$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{c}} = \vec{\mathbf{0}}$$

d)
$$\vec{a} \times \vec{b}$$
, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ are mutually perpendicular

9. If *G* is the centre of a regular hexagon *ABCDEF*, then $\vec{A}B + \vec{A}C + \vec{A}D + \vec{A}E + \vec{A}F =$

- a) $3\vec{A}G$
- b) $2\vec{A}G$
- c) $6\vec{A}G$
- d) $4\vec{A}G$

10. **I.** Two non-zero. Non-collinear vectors are linearly independent.

II. Any three coplanar vectors are linearly dependent. Which of the above statements is /are true?

c) Both I and II

d) Neither I nor II

If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then

 $[2\vec{a} - 3\vec{b} \ 7\vec{b} - 9\vec{c} \ 12\vec{c} - 23\vec{a}]$ is equal ro

a) 0

b)1/2

c) 24

d)32

12. $[\vec{a} + \vec{b} \vec{b} + \vec{c} \vec{c} + \vec{a}] = [\vec{a} \vec{b} \vec{c}]$, then

a) $[\vec{a} \vec{b} \vec{c}] = 1$

b) \vec{a} , \vec{b} , \vec{c} are coplanar

c) $[\vec{a} \ \vec{b} \ \vec{c}] = -1$

d) \vec{a} , \vec{b} , \vec{c} are mutually perpendicular

13. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = \sqrt{37}$, $|\vec{b}| = 3$, $|\vec{c}| = 4$, then the angle between \vec{b} and \vec{c}

a) 30°

b) 45°

c) 60°

14. A unit vector coplanar with $\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$, and perpendicular to $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is

b) $\left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}\right)$

c) $\left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{\sqrt{6}}\right)$

15. The projection of the vector $\hat{i} + \hat{j} + \hat{k}$ along the vector of \hat{j} , is

a) 1

b)0

c) 2

d) -1

Volume of the parallelopiped having vertices at $0 \equiv (0,0,0)$, $A \equiv (2, -2,4)$,

 $B \equiv (5, -4,4)$ and $C \equiv (1, -2,4)$

a) 5 cu units

b) 10 cu units

c) 15 cu units

d) 20 cu units

17. The area of parallelogram constructed on the vectors $\vec{a} = \vec{p} + 2\vec{q}$ and $\vec{b} = 2\vec{p} + \vec{q}$, where \vec{p} and \vec{q} are unit vectors forming an angle of 30° is

a) 3/2

c) 7/2

d) None of these

18. If \vec{a} is a vector perpendicular to the vectors $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $c = -2\hat{i} + 4\hat{j} + \hat{k}$ and satisfies the condition $\vec{a} \cdot (\hat{i} - 2\hat{j} + \hat{k}) = -6$, then $\vec{a} =$

a) $5\hat{i} + \frac{7}{2}\hat{j} - 4\hat{k}$

b) $10\hat{i} + 7\hat{j} - 8\hat{k}$ c) $5\hat{i} - \frac{7}{2}\hat{j} + 4\hat{k}$

d) None of these

19. The projection of $\vec{a} = 3\hat{i} - \hat{j} + 5\hat{k}$ on $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ is

a) $\frac{8}{\sqrt{35}}$

c) $\frac{8}{\sqrt{14}}$

d) $\sqrt{14}$

20. Let \overrightarrow{ABCDEF} be a regular hexagon and $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, then \overrightarrow{AE} is equal to

a) $\vec{a} + \vec{b} + \vec{c}$

b) $\vec{b} + \vec{c}$

c) $\vec{a} + \vec{b}$

 $d)\vec{a} + \vec{c}$