

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 5

Topic:- vector algebra

1.		\hat{k} and $a\hat{i}+b\hat{j}+c\hat{k}$ are per		d) None of these
2.		$\vec{\mathbf{b}}$) +z($\vec{\mathbf{c}} \times \vec{\mathbf{a}}$) and [$\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}$ b) $\vec{\alpha} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}})$	$[\vec{c}] = \frac{1}{8}, \text{ then } x + y + z \text{ is eq}$ $c) 8 (\vec{a} + \vec{b} + \vec{c})$	qual to d) None of these
3.	· ·	and $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} - 15\hat{\mathbf{k}}$ are colling b) $a = 9$, $b = 1$	near, then c) $a = 3$, $b = 3$	d) $a = 9, b = 3$
4.	Let \vec{a} and \vec{b} be two unit a) $\sqrt{5}$	vectors such that angle b) $\sqrt{3}$	between them is 60°. Th	en, $ \vec{\mathbf{a}} - \vec{\mathbf{b}} $ is equal to d) 1
5.			among the following is c) $(0, -4, -6)$	
6.	If \vec{a} and \vec{b} are unit vector a) $\vec{a} - \vec{b}$	ors, then the vectors $(\vec{a} - \vec{b})$	$(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{b})$ is paralle c) $(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{b})$	l to the vector d) $2\vec{a} + \vec{b}$
7. coo	7. If θ is the angle between the lines AB and AC where A , B and C are the three points with coordinates $(1,2,-1)$, $(2,0,3)$, $(3,-1,2)$ respectively, then $\sqrt{462}\cos\theta$ is equal to a) 20 b) 10 c) 30 d) 40			
	duct $[\vec{\mathbf{u}}\vec{\mathbf{v}}\vec{\mathbf{w}}]$ is	$\vec{\mathbf{w}} = \hat{\mathbf{i}} + 3\hat{\mathbf{k}}$, If $\vec{\mathbf{u}}$ is a unit where $\hat{\mathbf{v}} = \hat{\mathbf{i}} + 3\hat{\mathbf{k}}$, $\hat{\mathbf{v}} = \hat{\mathbf{i}} + 3\hat{\mathbf{k}}$, $\hat{\mathbf{v}} = \hat{\mathbf{v}} + 3\hat{\mathbf{v}}$, $\hat{\mathbf{v}} = 3\hat{\mathbf{v}}$, $\hat{\mathbf{v}} =$	vector, then maximum vs c) $\sqrt{59}$	alue of the scalar triple $\mathrm{d})\sqrt{60}$
9. Each of the angle between vectors \vec{a} , \vec{b} and \vec{c} is equal to 60°. If $ \vec{a} = 4$, $ \vec{b} = 2$ and $ \vec{c} = 6$, then the modulus of $\vec{a} + \vec{b} + \vec{c}$, is				
	a) 10	b) 15	c) 12	d) None of these
10. A force of magnitude 5 unit acting along the vector $2\hat{\bf i} - 2\hat{\bf j} + \hat{\bf k}$ displaces the point of applications from (1,2,3) to (5,3,7) then the work done is				
	a) 50/7 unit	b) 50/3 unit	c) 25/3 unit	d) 25/4 unit

11. The equation of the plane passing through three non-collinear points $\vec{a}, \vec{b}, \vec{c}$ is

a)
$$\vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}) = 0$$

b)
$$\vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}) = [\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$$

c)
$$\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})) = [\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$$

d)
$$\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}) = 0$$

12. If a vector \vec{r} of magnitude $3\sqrt{6}$ is directed along the bisector of the angle between the vectors \vec{a} $=7\hat{i}-4\hat{j}-4\hat{k}$ and $\vec{b}=-2\hat{i}-\hat{j}+2\hat{k}$, then $\vec{r}=$

a)
$$\hat{i} - 7\hat{j} + 2\hat{k}$$

b)
$$\hat{i} + 7\hat{j} - 2\hat{k}$$

c)
$$-\hat{i} + 7\hat{j} + 2\hat{k}$$
 d) $\hat{i} - 7\hat{j} - 2\hat{k}$

d)
$$\hat{i} - 7\hat{i} - 2\hat{k}$$

13. If the point whose position vectors are $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $6\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $14\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + p\hat{\mathbf{k}}$ are collinear, then the value of p is

Let $\vec{a} \cdot \vec{b}$ and \vec{c} be non-zero vectors such that

$$(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \frac{1}{3} |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| \vec{\mathbf{a}}$$

If θ is the acute angle between the vectors \vec{b} and \vec{c} then $\sin \theta$ equals

a)
$$\frac{1}{3}$$

b)
$$\frac{\sqrt{2}}{3}$$

c)
$$\frac{2}{3}$$

d)
$$\frac{2\sqrt{2}}{3}$$

- 15. Let *ABC* be a triangle, the position vectors of whose vertices are respectively $7\hat{\bf i} + 10\hat{\bf k}$, $-\hat{\bf i} + 6\hat{\bf j}$ $+6\hat{\mathbf{k}}$ and $-4\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ Then, the $\triangle ABC$ is
 - a) Isosceles

b) Equilateral

c) Right angled isosceles

- d) None of these
- 16. If C is the middle point of AB and P is any point outside AB, then

a)
$$\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$$

b)
$$\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$$

c)
$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \vec{0}$$

b)
$$P\vec{A} + P\vec{B} = 2P\vec{C}$$
 c) $P\vec{A} + P\vec{B} + P\vec{C} = \vec{0}$ d) $P\vec{A} + P\vec{B} + 2P\vec{C} = \vec{0}$

17. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}$ are any two vwctors, then $(2\vec{\mathbf{a}} + 3\vec{\mathbf{b}}) \times (5\vec{\mathbf{a}} + 7\vec{\mathbf{b}}) + \vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is equal to

c)
$$\vec{a} \times \vec{b}$$

d)
$$\vec{\mathbf{b}} \times \vec{\mathbf{a}}$$

18. The moment about the point M(-2, 4, -6) of the force represented in magnitude and position by AB where the points A and B have the coordinates (1, 2, -3) and (3, -4, 2) respectively is

a)
$$8\hat{i} - 9\hat{j} - 14\hat{k}$$

b)
$$2\hat{i} - 6\hat{j} + 5\hat{k}$$

c)
$$-3\hat{i} + 2\hat{j} - 3\hat{k}$$
 d) $-5\hat{i} + 8\hat{j} - 8\hat{k}$

d)
$$-5\hat{i} + 8\hat{j} - 8\hat{k}$$

19. If the position vectors of A_iB_i and C_i are respectively $2\hat{\mathbf{i}}_i - \hat{\mathbf{j}}_i + \hat{\mathbf{k}}_i$, $\hat{\mathbf{i}}_i - 3\hat{\mathbf{j}}_i - 5\hat{\mathbf{k}}_i$ and $3\hat{\mathbf{i}}_i - 4\hat{\mathbf{j}}_i - 4\hat{\mathbf{k}}_i$ then $\cos^2 A$ is equal to

b)
$$\frac{6}{41}$$

c)
$$\frac{35}{41}$$

20. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ where \vec{a} , \vec{b} , \vec{c} are non-coplanar, then

a)
$$\vec{r} \perp \vec{c} \times \vec{a}$$

b)
$$\vec{r} \perp \vec{a} \times \vec{b}$$

c)
$$\vec{r} \perp \vec{b} \times \vec{c}$$

d)
$$\vec{r} = \vec{0}$$