CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 5

Topic :- vector algebra

1. The vectors $2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $a \hat{i}+b \hat{j}+c \hat{k}$ are perpendicular when
a) $a=2, b=3, c=-4$
b) $a=4, b=4, c=5$
c) $a=4, b=4, c=-2$
d) None of these
2. If $\overrightarrow{\boldsymbol{\alpha}}=x(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+y(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}})+z(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$ and $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\frac{1}{8}$, then $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is equal to
a) $8 \vec{\alpha} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
b) $\vec{\alpha} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
c) $8(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
d) None of these
3. If vectors $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}-15 \hat{\mathbf{k}}$ are collinear, then
a) $a=3, b=1$
b) $a=9, b=1$
c) $a=3, b=3$
d) $a=9, b=3$
4. Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two unit vectors such that angle between them is 60°. Then, $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$ is equal to
a) $\sqrt{5}$
b) $\sqrt{3}$
c) 0
d) 1
5. The point collinear with $(1,-2,-3)$ and $(2,0,0)$ among the following is
a) $(0,4,6)$
b) $(0,-4,-5)$
c) $(0,-4,-6)$
d) $(0,-4,6)$
6. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are unit vectors, then the vectors $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ is parallel to the vector
a) $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
b) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
c) $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
d) $2 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
7. If θ is the angle between the lines $A B$ and $A C$ where A, B and C are the three points with coordinates $(1,2,-1),(2,0,3),(3,-1,2)$ respectively, then $\sqrt{462} \cos \theta$ is equal to
a) 20
b) 10
c) 30
d) 40
8. Let $\overrightarrow{\mathbf{v}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{w}}=\hat{\mathbf{i}}+3 \hat{\mathbf{k}}$, If $\overrightarrow{\mathbf{u}}$ is a unit vector, then maximum value of the scalar triple product $[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}$] is
a) -1
b) $\sqrt{10}+\sqrt{6}$
c) $\sqrt{59}$
d) $\sqrt{60}$
9. Each of the angle between vectors \vec{a}, \vec{b} and \vec{c} is equal to 60°. If $|\vec{a}|=4,|\vec{b}|=2$ and $|\vec{c}|=6$, then the modulus of $\vec{a}+\vec{b}+\vec{c}$, is
a) 10
b) 15
c) 12
d) None of these
10. A force of magnitude 5 unit acting along the vector $2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ displaces the point of applications from $(1,2,3)$ to $(5,3,7)$ then the work done is
a) $50 / 7$ unit
b) $50 / 3$ unit
c) $25 / 3$ unit
d) $25 / 4$ unit
11. The equation of the plane passing through three non-collinear points $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}))=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0$
12. If a vector \vec{r} of magnitude $3 \sqrt{6}$ is directed along the bisector of the angle between the vectors \vec{a} $=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$, then $\vec{r}=$
a) $\hat{i}-7 \hat{j}+2 \hat{k}$
b) $\hat{i}+7 \hat{j}-2 \hat{k}$
c) $-\hat{i}+7 \hat{j}+2 \hat{k}$
d) $\hat{i}-7 \hat{j}-2 \hat{k}$
13. If the point whose position vectors are $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, 6 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $14 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+p \hat{\mathbf{k}}$ are collinear, then the value of p is
a) 2
b) 4
c) 6
d) 8
14. Let $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be non-zero vectors such that
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\frac{1}{3}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \overrightarrow{\mathbf{a}}$
If θ is the acute angle between the vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ then $\sin \theta$ equals
a) $\frac{1}{3}$
b) $\frac{\sqrt{2}}{3}$
c) $\frac{2}{3}$
d) $\frac{2 \sqrt{2}}{3}$
15. Let $A B C$ be a triangle, the position vectors of whose vertices are respectively $7 \hat{\mathbf{i}}+10 \hat{\mathbf{k}},-\hat{\mathbf{i}}+6 \hat{\mathbf{j}}$ $+6 \hat{\mathbf{k}}$ and $-4 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ Then, the $\triangle A B C$ is
a) Isosceles
b) Equilateral
c) Right angled isosceles
d) None of these
16. If C is the middle point of $A B$ and P is any point outside $A B$, then
a) $P \vec{A}+P \vec{B}=P \vec{C}$
b) $P \vec{A}+P \vec{B}=2 P \vec{C}$
c) $P \vec{A}+P \vec{B}+P \vec{C}=\overrightarrow{0}$
d) $P \vec{A}+P \vec{B}+2 P \vec{C}=\overrightarrow{0}$
17. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ are any two vwctors, then $(2 \overrightarrow{\boldsymbol{a}}+3 \overrightarrow{\mathbf{b}}) \times(5 \overrightarrow{\mathbf{a}}+7 \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is equal to
a) $\overrightarrow{\boldsymbol{0}}$
b) 0
c) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$
18. The moment about the point $M(-2,4,-6)$ of the force represented in magnitude and position by $A B$ where the points A and B have the coordinates $(1,2,-3)$ and $(3,-4,2)$ respectively is
a) $8 \hat{i}-9 \hat{j}-14 \hat{k}$
b) $2 \hat{i}-6 \hat{j}+5 \hat{k}$
c) $-3 \hat{i}+2 \hat{j}-3 \hat{k}$
d) $-5 \hat{i}+8 \hat{j}-8 \hat{k}$
19. If the position vectors of A, B and Care respectively $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ then $\cos ^{2} A$ is equal to
a) 0
b) $\frac{6}{41}$
c) $\frac{35}{41}$
d) 1
20. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, then
a) $\vec{r} \perp \vec{c} \times \vec{a}$
b) $\vec{r} \perp \vec{a} \times \vec{b}$
c) $\vec{r} \perp \vec{b} \times \vec{c}$
d) $\vec{r}=\overrightarrow{0}$
