CLASS : XIIth

SUBJECT : MATHS

DATE :

Topic :- VECTOR ALGEBRA

1. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for some non-zero vector \vec{r}, then the value of $[\vec{a} \vec{b} \vec{c}]$, is
a) 2
b) 3
c) 0
d) None of these
2. If the angle between $\hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}+a \hat{\mathbf{k}}$ is $\frac{\pi}{3}$, then the value of a is
a) 0 or 2
b) -4 or 0
c) 0 or -2
d) 2 or -2
3. A vector which makes equal angles with the vectors $\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k}), \frac{1}{5}(-4 \hat{i}-3 \hat{k})$, and \hat{j}, is
a) $5 \hat{i}+\hat{j}+5 \hat{k}$
b) $-5 \hat{i}+\hat{j}+5 \hat{k}$
c) $-5 \hat{i}+\hat{j}+5 \hat{k}$
d) $5 \hat{i}+\hat{j}-5 \hat{k}$
4. Which one of the following vectors is of magnitude 6 and perpendicular to both $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\dot{\mathbf{j}}}+\hat{\mathbf{k}}$ $\operatorname{and} \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$?
a) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
b) $2(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
c) $3(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
d) $2(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
5. In a right angled triangle $A B C$, the hypotenuse $A b=p$, then $\vec{A} B \cdot \vec{A} C+\vec{B} C \cdot \vec{B} A+\vec{C} A \cdot \vec{C} B$ is equal to
a) $2 p^{2}$
b) $\frac{p^{2}}{2}$
c) p^{2}
d) None of these
6. Which one of the following is not correct?
a) If $\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{c}}$ for some non-zero vector $\overrightarrow{\mathbf{p}}$ then $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar
b) The vectors $\hat{\mathbf{i}}+3 \hat{\mathbf{j}}, 2 \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are coplanar
c) The vector $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is coplanar with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$
d) If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ are unit vectors and angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{3}$, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|<1$
7. The length of the shortest distance between the two lines
$\overrightarrow{\mathbf{r}}=(-3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}})+s(-4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{r}}=(-2 \hat{\mathbf{i}}+7 \hat{\mathbf{k}})+t(-4 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$ is
a) 7 units
b) 13 units
c) 8 units
d) 9 units
8. A vector perpendicular to the plane containing the points $A(1 .-1,2), B(2,0,-1), C(0,2,1)$ is
a) $4 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
b) $8 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
9. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are unit vectors such that $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]=\frac{1}{4}$, then angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{2}$
10. If $|\overrightarrow{\mathbf{a}}|=3,|\overrightarrow{\mathbf{b}}|=4$, then a value of λ for which $\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}$ is perpendicular to $\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}$, is
a) $\frac{9}{16}$
b) $\frac{3}{4}$
c) $\frac{3}{2}$
d) $\frac{4}{3}$
11. $(\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{y}}) \times(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})=$ \qquad .. where $\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{y}} \in R^{3}$
a) $2(\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}})$
b) $|\overrightarrow{\mathbf{x}}|^{2}-|\overrightarrow{\mathbf{y}}|^{2}$
c) $\frac{1}{2}(\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}})$
d) None of these
12. If the vectors $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+\mu \hat{\mathbf{k}}$ are mutually orthogonal, then (λ, μ) is equal to
a) $(-3,2)$
b) $(2,-3)$
c) (-2.3)
d) $(3,-2)$
13. Given that $\vec{a}=(1,1,1), \vec{c}=(0,1,-1)$ and $\vec{a} \cdot \vec{b}=3$. If $\vec{a} \times \vec{b}=\vec{c}$, then $\vec{b}=$
a) $\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$
b) $\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}\right)$
c) $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$
d) None of these
14. If \hat{a}, \hat{b} and \hat{c} are three unit vectors such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are the angles between the vectors $\hat{a}, \hat{b} ; \hat{b}, \hat{c}$ and \hat{c}, \hat{a} respectively, then among θ_{1}, θ_{2} and θ_{3}
a) All are acute angles
b) All are right angles
c) At least one is obtuse angle
d) None of these
15. Given vectors $\vec{x}=3 \hat{i}-6 \hat{j}-\hat{k}, \vec{y}=\hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{z}=3 \hat{i}+4 \hat{j}+12 \hat{k}$, then the projection of $\vec{x} \times \vec{y}$ on vector \vec{z} is
a) 14
b) -14
c) 12
d) 15
16. If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times\{\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}\}$ is equal to
a) $|\vec{a}|^{2} \vec{b}$
b) $|\vec{a}|^{3} \vec{b}$
c) $|\vec{a}|^{4} \vec{b}$
d) None of these
17. Let G be the centroid of $\triangle A B C$. If $\vec{A} B=\vec{a}, \vec{A} C=\vec{b}$, then the $\vec{A} G$, in terms of \vec{a} and \vec{b} is
a) $\frac{2}{3}(\vec{a}+\vec{b})$
b) $\frac{1}{6}(\vec{a}+\vec{b})$
c) $\frac{1}{3}(\vec{a}+\vec{b})$
d) $\frac{1}{2}(\vec{a}+\vec{b})$
18. The moment of the couple formed by the forces $5 \hat{i}+\hat{k}$ and $-5 \hat{i}-\hat{k}$ acting at the point $(9,-1,2)$ and $(3,-2,1)$ respectively is
a) $-\hat{i}+\hat{j}+5 \hat{k}$
b) $\hat{i}-\hat{j}-5 \hat{k}$
c) $2 \hat{i}-2 \hat{j}-10 \hat{k}$
d) $-2 \hat{i}+2 \hat{j}+10 \hat{k}$
19. The value of c so that for all real x, then vectors ocx $\hat{\mathbf{i}}-6 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, x \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 c x \hat{\mathbf{k}}$ make an obtuse angle are
a) $c<0$
b) $0<c<\frac{4}{3}$
c) $-\frac{4}{3}<c<0$
d) $c>0$
20. If θ be the angle between the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, then
a) $\cos \theta=\frac{4}{21}$
b) $\cos \theta=\frac{3}{19}$
c) $\cos =\frac{2}{19}$
d) $\cos \theta=\frac{5}{21}$
