

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 4

Topic :- vector algebra

- 1. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for some non-zero vector \vec{r} , then the value of $[\vec{a}\vec{b}\vec{c}]$, is a) 2 b) 3 c) 0 d) None of these
- 2. If the angle between $\hat{\mathbf{i}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}} + a\hat{\mathbf{k}}$ is $\frac{\pi}{3}$, then the value of *a* is a) 0 or 2 b) -4 or 0 c) 0 or -2 d) 2 or -2
- 3. A vector which makes equal angles with the vectors $\frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k}),\frac{1}{5}(-4\hat{i}-3\hat{k})$, and \hat{j} , is a) $5\hat{i}+\hat{j}+5\hat{k}$ b) $-5\hat{i}+\hat{j}+5\hat{k}$ c) $-5\hat{i}+\hat{j}+5\hat{k}$ d) $5\hat{i}+\hat{j}-5\hat{k}$

4. Which one of the following vectors is of magnitude 6 and perpendicular to both $\vec{a} = 2\dot{i} + 2\dot{j} + \hat{k}$ and $\vec{b} = \dot{i} - 2\dot{j} + 2\dot{k}$?

a) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ b) $2(2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ c) $3(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}})$ d) $2(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}})$

5. In a right angled triangle *ABC*, the hypotenuse Ab = p, then $\vec{A}B.\vec{A}C + \vec{B}C.\vec{B}A + \vec{C}A.\vec{C}B$ is equal to a) $2p^2$ b) $\frac{p^2}{2}$ c) p^2 d)None of these

6. Which one of the following is not correct? a) If $\vec{p} \cdot \vec{a} = \vec{p} \cdot \vec{b} = \vec{p} \cdot \vec{c}$ for some non-zero vector \vec{p} then $\vec{a}, \vec{b}, \vec{c}$ are coplanar b) The vectors $\hat{i} + 3\hat{j}$, $2\hat{i} + \hat{k}$ and $\hat{j} + \hat{k}$ are coplanar

c) The vector $\vec{a} \times (\vec{b} \times \vec{c})$ is coplanar with \vec{a} and \vec{b} d) If \vec{a}, \vec{b} are unit vectors and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$, then $|\vec{a} + \vec{b}| < 1$

7. The length of the shortest distance between the two lines

 $\vec{\mathbf{r}} = (-3\hat{\mathbf{i}} + 6\hat{\mathbf{j}}) + s(-4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ and $\vec{\mathbf{r}} = (-2\hat{\mathbf{i}} + 7\hat{\mathbf{k}}) + t(-4\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ is a) 7 units b) 13 units c) 8 units d) 9 units

8. A vector perpendicular to the plane containing the points A(1. - 1, 2), B(2, 0, -1), C(0, 2, 1) is a) $4\hat{\mathbf{i}} + 8\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ b) $8\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ c) $3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$

9. If **a** and **b** are unit vectors such that [**a b a** × **b**] = ¹/₄, then angle between **a** and **b** is a) ^π/₃ b) ^π/₄ c) ^π/₆ d) ^π/₂
10. If |**a**| = 3, |**b**| = 4, then a value of λ for which **a** +λ**b** is perpendicular to **a** -λ**b**, is

	a) $\frac{9}{16}$	b) $\frac{3}{4}$		c) $\frac{3}{2}$		$d)\frac{4}{3}$	
11. $(\vec{\mathbf{x}} - \vec{\mathbf{v}}) \times (\vec{\mathbf{x}} + \vec{\mathbf{v}}) = \dots$ where $\vec{\mathbf{x}} \cdot \vec{\mathbf{v}} \in R^3$							
	a) $2(\vec{\mathbf{x}} \times \vec{\mathbf{y}})$	b) $ \vec{\mathbf{x}} ^2 - \bar{\mathbf{y}} $	$\vec{v} ^2$	c) $\frac{1}{2}(\vec{\mathbf{x}})$	$\times \vec{y}$)	d)None of these	
12. If the vectors $\vec{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $\vec{\mathbf{b}} = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \lambda\hat{\mathbf{i}} + \hat{\mathbf{j}} + \mu\hat{\mathbf{k}}$ are mutually orthogonal, the $(\lambda \mu)$ is equal to							
(7,	a) $(-3,2)$	b) (2, - 3))	c) (—	2.3)	d) (3, – 2)	
13.	Given that $\vec{a} = (1, 1, 1)$ a) $\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$	b) $\vec{c} = (0, 1, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{4}{3})$	— 1) and <i>ā.b</i> =)	= 3. If \overline{a} c) $\left(\frac{5}{3}, \frac{2}{3}\right)$	$\vec{a} \times \vec{b} = \vec{c}$, then $\vec{b} = \frac{2}{3}, \frac{2}{3}$	= d)None of these	
 14. If â, b̂ and ĉ are three unit vectors such that â + b̂ + ĉ is also a unit vector and θ₁, θ₂ and θ₃ are the angles between the vectors â, b̂;b̂, ĉ and ĉ, â respectively, then among θ₁, θ₂ and θ₃ a) All are acute angles b) All are right angles c) At least one is obtuse angle d) None of these 							
15. Given vectors $\vec{x} = 3\hat{i} - 6\hat{j} - \hat{k}$, $\vec{y} = \hat{i} + 4\hat{j} - 3\hat{k}$ and $\vec{z} = 3\hat{i} + 4\hat{j} + 12\hat{k}$. then the projection of \vec{x} :							
on	vector \vec{z} is						
	a) 14	b) <mark>-14</mark>		c) 12		d)15	
16.	If the vectors \vec{a} and \vec{b} a	re mutually	y perpendicula	ar, then $1 \rightarrow 1^{4}$	$d \vec{a} \times \{ \vec{a} \times \{ \vec{a} \times \{ \vec{a} \times (\vec{a} \times \vec{a} \times \vec{a} \times \vec{a})\}$	$\vec{k} \times \vec{b}$)} is equal to	
	a) <i>a</i> ² <i>b</i>	b) $ a ^{3}b$		c) a ⁺	b	d) None of these	
17. Let <i>G</i> be the centroid of $\Delta A \overrightarrow{BC}$. If $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$, then the \overrightarrow{AG} , in terms of \overrightarrow{a} and \overrightarrow{b} is							
	a) $\frac{2}{3}(\vec{a} + \vec{b})$	b) $\frac{1}{6}(\vec{a} + b)$)	c) $\frac{1}{3}(\vec{a})$	(+b)	d) $\frac{1}{2}(\vec{a}+\vec{b})$	
18. The moment of the couple formed by the forces $5\hat{i} + \hat{k}$ and $-5\hat{i} - \hat{k}$ acting at the point (9, -1, 2) and (3, -2, 1) respectively is							
	a) $-\hat{i}+\hat{j}+5\hat{k}$	b) $\hat{i} - \hat{j} - 5$	5 <i>k</i>	c) 2 <i>î –</i>	$-2\hat{j}-10\hat{k}$	d) $-2\hat{i}+2\hat{j}+10\hat{k}$	
19. The value of <i>c</i> so that for all real <i>x</i> , then vectors ocx $\hat{i} - 6\hat{j} + 3\hat{k}$, $x\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle are							
	a) <i>c</i> < 0	b) 0 < c <	$\frac{4}{3}$	c) $-\frac{4}{3}$	< <i>c</i> < 0	d) $c > 0$	
20	20. If A be the angle between the vectors $\vec{a} = 2\hat{i} \pm 2\hat{i}$, \hat{k} and $\vec{b} = 6\hat{i}$, $2\hat{i} \pm 2\hat{k}$ then						

20. If θ be the angle between the vectors $\vec{\mathbf{a}} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{\hat{k}}$ and $\vec{\mathbf{b}} = 6\mathbf{i} - 3\mathbf{j} + 2\mathbf{\hat{k}}$, then a) $\cos \theta = \frac{4}{21}$ b) $\cos \theta = \frac{3}{19}$ c) $\cos \theta = \frac{2}{19}$ d) $\cos \theta = \frac{5}{21}$