

CLASS: XIIth DATE:

SUBJECT: MATHS DPP NO.: 3

		Topic :- vec	TOR ALGEBRA				
1.	If D,E,F are respectivel	y the mid-points of AB , AB	AC and BC respectively i	in a $\triangle ABC$, then $\overrightarrow{BE} + \overrightarrow{AF}$			
	a) \overrightarrow{DC}	$= b)\frac{1}{2}\overrightarrow{BF}$	c) $2\overrightarrow{BF}$	$\mathrm{d})\frac{3}{2}\overrightarrow{BF}$			
2.	$\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are mutually perpart $\vec{\mathbf{a}}$	oendicular unit vectors, t	then $ \vec{a} + \vec{b} + \vec{c} $ is equal c) 1	to d)0			
	Let $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = d\hat{i} + \hat{j} + (2d - 1)\hat{k}$. If \vec{c} is parallel to the plane of the ors \vec{a} and \vec{b} , then $11d =$						
	a) 2	b) 1	c) -1	d) 0			
4. (<i>l</i> p	$+ m\vec{\mathbf{q}} + n\vec{\mathbf{r}}$) is	oplanar vectors and $\vec{\mathbf{p}}$, $\vec{\mathbf{q}}$, b) $l^3 + m^3 + n^3$					
5.		ors, then $ \vec{\mathbf{a}} - \vec{\mathbf{b}} ^2 + \vec{\mathbf{b}} ^2$					
6. A constant force $\vec{\mathbf{F}} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is acting on a particle such that the particle is displaced from the point (3,4,5). The work done by the force is							
	a) 2	b)3	c) 4	d)5			
	The value of a , for which the points A , B , C with position vectors $-\hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and $a\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ respectively are the vertices of a right in $C = \frac{\pi}{2}$ are						
	a) -2 and -1	b) - 2 and 1	c) 2 and — 1	d) 2 and 1			
8.	If $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b})$ a) $\vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$	•	c) $\vec{c} \times \vec{a} = \vec{a} \times \vec{b}$	$\mathrm{d})\vec{c}\times\vec{b}=\vec{b}\times\vec{a}$			
9.	If $\vec{a} + \vec{b} \neq 0$ and \vec{c} is a nation a) $\vec{a} + \vec{b}$	non-zero vector, then $(\vec{a}$ b) $(\vec{a} + \vec{b}) \times \vec{c}$	$(\vec{c} + \vec{b}) \times \{\vec{c} - (\vec{a} + \vec{b})\}$ is e	qual to d) $\lambda(\vec{a} \times \vec{b})$, $\lambda \neq 0$			

	If a force $\vec{\mathbf{F}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{j}}$ but the point $Q(2, -1, 3)$	$4\hat{f k}$ is acting at the point ${f k}$	P(1, -1, 2) then the mag	gnitude of moment of $\vec{\mathbf{F}}$			
	a) √57	b) $\sqrt{39}$	c) 12	d) 17			
11.	If $ \vec{\mathbf{a}} = \vec{\mathbf{b}} = 1$ and $ \vec{\mathbf{a}} + \vec{\mathbf{b}} = \sqrt{3}$, then the value of $(3\vec{\mathbf{a}} - 4\vec{\mathbf{b}}) \cdot (2\vec{\mathbf{a}} + 5\vec{\mathbf{b}})$ is						
	a) -21	b) $-\frac{21}{2}$	c) 21	d) $\frac{21}{2}$			
12. If \hat{a},\hat{b},\hat{c} are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a}\times(\hat{b}\times\hat{c})=\frac{1}{2}\hat{b}$, then the angle between \hat{a} and \hat{c} is							
	a) 30°	b) 45°	c) 60°	d)90°			
13.	If the vectors $3\hat{i} + \lambda \hat{j} + a$ a) -14	\hat{k} and $2\hat{i} - \hat{j} + 8\hat{k}$ are perb) 7	rpendicular, then λ is eq c) 14	ual to d)1/7			
	4. The equation of the plane perpendicular to the line $\frac{-1}{1} = \frac{y-2}{-1} = \frac{z+1}{2}$ and passing through the point(2,3,1) is						
	a) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 1$	b) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 1$	c) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 7$	$\mathrm{d})\vec{\mathbf{r}}\cdot\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}-2\hat{\mathbf{k}}\right)=10$			
15. $(\vec{\mathbf{a}} - \vec{\mathbf{b}}) \cdot \{(\vec{\mathbf{b}} - \vec{\mathbf{c}}) \times (\vec{\mathbf{c}} - \vec{\mathbf{a}})\}$ is equal to							
	a) $2 \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}}$		c) 0	$d)\vec{a}\cdot\vec{b}$			
16.	6. If \hat{n}_1 , \hat{n}_2 are two unit vectors and θ is the angle between them, then $\cos \theta/2 =$						
	a) $\frac{1}{2} \hat{n}_1 + \hat{n}_2 $	b) $\frac{1}{2} \hat{n}_1 - \hat{n}_2 $	c) $\frac{1}{2}(\hat{n}_1.\hat{n}_2)$	$d) \frac{ \hat{n}_1 \times \hat{n}_2 }{2 \hat{n}_1 \hat{n}_2 }$			
17. Let \overrightarrow{ABCD} be the parallelogram whose sides \overrightarrow{AB} and \overrightarrow{AD} are represented by the vectors $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}}$ $-5\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ respectively. Then if $\vec{\mathbf{a}}$ is a unit vector parallel to \overrightarrow{AC} , then $\vec{\mathbf{a}}$ is equal to a) $(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}})/3$ b) $(3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}})/3$ c) $(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 3\hat{\mathbf{k}})/7$ d) $(3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}})/7$							
3	a) $(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}})/3$	b) $(3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}})/3$	c) $(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 3\hat{\mathbf{k}})/7$	$d)(3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}})/7$			
18.	If the points with posit a) -40	tion vectors $60\hat{\mathbf{i}} + 3\hat{\mathbf{j}}, 40\hat{\mathbf{i}}$ b) -20	$-8\hat{\mathbf{j}}$ and $a\hat{\mathbf{i}}$ $-52\hat{\mathbf{j}}$ are coll c) 20	inear, then a is equal to d) 40			
19. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors such that $\vec{a} + \vec{b} + \vec{c} = \alpha \vec{d}$ and $\vec{b} + \vec{c} + \vec{d} = \beta \vec{a}$, then $\vec{a} + \vec{b} + \vec{c} + \vec{d}$ is equal to							
	a) $\vec{0}$	b) $\alpha \vec{a}$	c) $\beta \vec{b}$	d) $(\alpha + \beta)\vec{c}$			
	-		, ,				
20.	The unit vector perper	ndicular to $\hat{\mathbf{i}} - \hat{\mathbf{j}}$ and copl	anar with $\hat{i} + 2\hat{j}$ and $\hat{i} + 3\hat{j}$	sĵ is			
20.	The unit vector perperation a) $\frac{2\hat{\mathbf{i}} - 5\hat{\mathbf{j}}}{\sqrt{29}}$	-		$\hat{\mathbf{j}}$ is \mathbf{d}) $\hat{\mathbf{i}}$ $+$ $\hat{\mathbf{j}}$			