CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 3

Topic :- vector algebra

1. If D, E, F are respectively the mid-points of $A B, A C$ and $B C$ respectively in a $\triangle A B C$, then $\overrightarrow{B E}+\overrightarrow{A F}$
a) $\overrightarrow{D C}$
b) $\frac{1}{2} \overrightarrow{B F}$
c) $2 \overrightarrow{B F}$
d) $\frac{3}{2} \overrightarrow{B F}$
2. $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are mutually perpendicular unit vectors, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$ is equal to
a) $\sqrt{3}$
b) 3
c) 1
d) 0
3. Let $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=d \hat{i}+\hat{j}+(2 d-1) \hat{k}$. If \vec{c} is parallel to the plane of the vectors \vec{a} and \vec{b}, then $11 d=$
a) 2
b) 1
c) -1
d) 0
4. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-coplanar vectors and $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{r}}$, are reciprocal vectors, then $(l \overrightarrow{\mathbf{a}}+m \overrightarrow{\mathbf{b}}+n \overrightarrow{\mathbf{c}})$. $(l \overrightarrow{\mathbf{p}}+m \overrightarrow{\mathbf{q}}+n \overrightarrow{\mathbf{r}})$ is
a) $l+m+n$
b) $l^{3}+m^{3}+n^{3}$
c) $l^{2}+m^{2}+n^{2}$
d) None of these
5. If $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}$ are unit vectors, then $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}|^{2}+|\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}|^{2}$ does not exceed
a) 4
b) 9
c) 8
d) 6
6. A constant force $\overrightarrow{\mathbf{F}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is acting on a particle such that the particle is displaced from the point $(1,2,3)$ to the point $(3,4,5)$. The work done by the force is
a) 2
b) 3
c) 4
d) 5
7. The value of a, for which the points A, B, C with position vectors $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ respectively are the vertices of a right with $C=\frac{\pi}{2}$ are
a) -2 and -1
b) -2 and 1
c) 2 and -1
d) 2 and 1
8. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, then
a) $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
b) $\vec{a} \times(\vec{b} \times \vec{c})=\overrightarrow{0}$
c) $\vec{c} \times \vec{a}=\vec{a} \times \vec{b}$
d) $\vec{c} \times \vec{b}=\vec{b} \times \vec{a}$
9. If $\vec{a}+\vec{b} \neq 0$ and \vec{c} is a non-zero vector, then $(\vec{a}+\vec{b}) \times\{\vec{c}-(\vec{a}+\vec{b})\}$ is equal to
a) $\vec{a}+\vec{b}$
b) $(\vec{a}+\vec{b}) \times \vec{c}$
c) $\lambda \vec{c}$, where $\lambda \neq 0$
d) $\lambda(\vec{a} \times \vec{b}), \lambda \neq 0$
10. If a force $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ is acting at the point $P(1,-1,2)$ then the magnitude of moment of $\overrightarrow{\mathbf{F}}$ about the point $Q(2,-1,3)$ is
a) $\sqrt{57}$
b) $\sqrt{39}$
c) 12
d) 17
11. If $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1$ and $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{3}$, then the value of $(3 \overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}}) \cdot(2 \overrightarrow{\mathbf{a}}+5 \overrightarrow{\mathbf{b}})$ is
a) -21
b) $-\frac{21}{2}$
c) 21
d) $\frac{21}{2}$
12. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, then the angle between \hat{a} and \hat{c} is
a) 30°
b) 45°
c) 60°
d) 90°
13. If the vectors $3 \hat{i}+\lambda \hat{j}+\hat{k}$ and $2 \hat{i}-\hat{j}+8 \hat{k}$ are perpendicular, then λ is equal to
a) -14
b) 7
c) 14
d) $1 / 7$
14. The equation of the plane perpendicular to the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}$ and passing through the point $(2,3,1)$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=1$
b) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=1$
c) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=7$
d) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})=10$
15. $(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot\{(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}})\}$ is equal to
a) $2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
c) 0
d) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
16. If \hat{n}_{1}, \hat{n}_{2} are two unit vectors and θ is the angle between them, then $\cos \theta / 2=$
a) $\frac{1}{2}\left|\hat{n}_{1}+\hat{n}_{2}\right|$
b) $\frac{1}{2}\left|\hat{n}_{1}-\hat{n}_{2}\right|$
c) $\frac{1}{2}\left(\hat{n}_{1} \cdot \hat{n}_{2}\right)$
d) $\frac{\left|\hat{n}_{1} \times \hat{n}_{2}\right|}{2\left|\hat{n}_{1}\right| \hat{n}_{2} \mid}$
17. Let $A B C D$ be the parallelogram whose sides $A B$ and $A D$ are represented by the vectors $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}$ $-5 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ respectively. Then if $\overrightarrow{\mathbf{a}}$ is a unit vector parallel to $\overrightarrow{\mathbf{A C}}$, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}) / 3$
b) $(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) / 3$
c) $(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) / 7$
d) $(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}) / 7$
18. If the points with position vectors $60 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}, 40 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}$ and $a \hat{\mathbf{i}}-52 \hat{\mathbf{j}}$ are collinear, then a is equal to
a) -40
b) -20
c) 20
d) 40
19. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a}+\vec{b}+\vec{c}=\alpha \vec{d}$ and $\vec{b}+\vec{c}+\vec{d}=\beta \vec{a}$, then $\vec{a}+\vec{b}$ $+\vec{c}+\vec{d}$ is equal to
a) $\overrightarrow{0}$
b) $\alpha \vec{a}$
c) $\beta \vec{b}$
d) $(\alpha+\beta) \vec{c}$
20. The unit vector perpendicular to $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and coplanar with $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ and $\hat{\mathbf{i}}+3 \hat{\mathbf{j}}$ is
a) $\frac{2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}}{\sqrt{29}}$
b) $2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}$
c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{j}})$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
