

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 2

Topic :- vector algebra

- 1. For any three vectors \vec{a}, \vec{b} and $\vec{c}, (\vec{a} \vec{b}) \cdot (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})$ is equal to a) $2\vec{a} \cdot (\vec{b} \times \vec{c})$ b) $[\vec{a} \vec{b} \vec{c}]$ c) $[\vec{a} \vec{b} \vec{c}]^2$ d)0
- 2. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors, then $\begin{bmatrix} 2 \vec{a} \vec{b} & 2\vec{b} & -\vec{c} & 2\vec{c} & -\vec{a} \end{bmatrix}$ is equal to a) 1 b) 0 c) $-\sqrt{3}$ d) $\sqrt{3}$
- 3. If \vec{a} and \vec{b} are two unit vectors inclined to *x*-axis at anlges 30° and 120°, then $|\vec{a} + \vec{b}|$ equals a) $\sqrt{\frac{2}{3}}$ b) $\sqrt{2}$ c) $\sqrt{3}$ d) 2
- 4. If the vectors $\hat{i} 2x\hat{j} + 3y\hat{k}$ and $\hat{i} + 2x\hat{j} 3y\hat{k}$ perpendicular, then the locus of (x, y) is a) A circle b) An ellipse c) A hyperbola d) None of these

5. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c} = -\frac{1}{4} |\vec{b}| |\vec{c}| \vec{a}$. If θ is the acute angle between vectors \vec{b} and \vec{c} , then the angle between \vec{a} and \vec{c} is equal to $a) \frac{2\pi}{3}$ $b) \frac{\pi}{4}$ $c) \frac{\pi}{3}$ $d) \frac{\pi}{2}$

- 6. A vector perpendicular to both the vectors $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ is a) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ b) $\hat{\mathbf{i}} - \hat{\mathbf{j}}$ c) $c(\hat{\mathbf{i}} - \hat{\mathbf{j}}), c$ is a scalar d) None of these
- 7. If \vec{a} , \vec{b} , \vec{c} are non-collinear vectors such that $\vec{a} + \vec{b}$ is parallel to \vec{c} and $\vec{c} + \vec{a}$ is parallel to \vec{b} , then a) $\vec{a} + \vec{b} = \vec{c}$
 - b) \vec{a} , \vec{b} , \vec{c} taken in order from the sides of a triangle
 - c) $\vec{b} + \vec{c} = \vec{a}$
 - d) None of these

8. A force of magnitude $\sqrt{6}$ acting along the line joining the points A(2, -1, 1) and B(3, 1, 2) displaces a particle from A to B. The work done by the force is

- a) 6 b) $6\sqrt{6}$ c) $\sqrt{6}$ d) 12
- 9. A unit vector \vec{a} makes an angle $\frac{\pi}{4}$ with *z*-axis, if $\vec{a} + \hat{j}$ is a unit vector, then \vec{a} is equal to

a)
$$\frac{\hat{i}}{2} + \frac{\hat{j}}{2} + \frac{\hat{k}}{2}$$
 b) $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$ c) $-\frac{\hat{i}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}}$ d) $\frac{\hat{i}}{2} - \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$

10. If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144$ and $|\vec{a}| = 4$ then $|\vec{b}|$ is equal to a) 12 b) 3 c) 8 d) 4

11. If \vec{a} is non-zero vector of modulus $|\vec{a}|$ and m is a non-zero scalar, then $m \vec{a}$ is a unit vector, if a) $m = \pm 1$ b) $m = |\vec{a}|$ c) $m = \frac{1}{|\vec{a}|}$ d) $m = \pm 2$

12. If the constant forces $2\hat{i} - 5\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ act on a particle due to which it is displaced from a point A(4, -3, -2) to a point B(6, 1, -3), then the work done by the forces is a) 15 units b) -15 units c) 9 units d) -9 units

13. If *P*, *Q*, *R* are three points with respective position vectors $\hat{i} + \hat{j}$, $\hat{i} - \hat{j}$ and $a\hat{i} + b\hat{j} + c\hat{k}$. The points *P*, *Q*, *R* are collinear, if

a) a = b = c = 1 b) a = b = c = 0 c) $a = 1, b, c \in R$ d) $a = 1, c = 0, b \in R$

14. The projection of the vector $\vec{a} = 4\hat{i} - 3\hat{j} + 2\hat{k}$ on the axis making equal acute angles with the coordinate axes is

	a) 3	b)√3	c) $\frac{3}{\sqrt{3}}$	d) None of these
15.	The value of $[2 \hat{i} 3\hat{j} - 5]$ a) -30	$\hat{\mathbf{k}}$] is equal to b) -25	c) 0	d)11
16.	$(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) \cdot \vec{d}$ eq a) $[\vec{a}\vec{b}\vec{c}](\vec{b} \cdot \vec{d})$	uals b) [<mark>ābc](</mark> ā · d̄)	c) $[\vec{a}\vec{b}\vec{c}](\vec{c}\cdot\vec{d})$	d)None of these
17. fror	If the constant force $2\hat{i}$ n a point $A(4, -3, -2)$ a) 10 units	$-5\hat{\mathbf{j}} + 6\hat{\mathbf{k}} \text{ and } -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ to a point $B(6,1, -3)$ the b) -10 units	$\hat{\mathbf{k}}$ act on a particle due t en the work done by the c) 9 units	o which it is displaced force is d)None of these
18. resp the	If forces of magnitudes bectively act on a particl work done by the forces a) 4 units	6 and 7 units acting in t e which is displaced from s is b) —4 units	he directions $\hat{i} - 2\hat{j} + 2\hat{k}$ m the point $P(2, -1, -1)$ c) 7 units	and 2 <i>î —3ĵ —6ĥ</i> 3) to <i>Q</i> (5, <i>—</i> 1, 1), then d) —7 units
19.	$\begin{bmatrix} \vec{\mathbf{b}} \times \vec{\mathbf{c}} & \vec{\mathbf{c}} \times \vec{\mathbf{a}} & \vec{\mathbf{a}} \times \vec{\mathbf{b}} \end{bmatrix} \text{ is e}$ a) $\begin{bmatrix} \vec{\mathbf{a}} & \vec{\mathbf{b}} & \vec{\mathbf{c}} \end{bmatrix}$	equal to b)2 [ā b č]	c) $\left[\vec{a} \vec{b} \vec{c} \right]^2$	d) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$
20.	<i>ABCD</i> is a quadrilatera a) 3 QP	l , <i>P,Q</i> are the mid points b) QP	s of $\overrightarrow{\mathbf{BC}}$ and $\overrightarrow{\mathbf{AD}}$, then $\overrightarrow{\mathbf{AB}}$ c) $4\overrightarrow{\mathbf{QP}}$	+ $\overrightarrow{\mathbf{DC}}$ is equal to d) $2\overrightarrow{\mathbf{QP}}$