CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 2

Topic :- vector algebra

1. For any three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}},(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}})$ is equal to
a) $2 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
b) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
d) 0
2. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit coplanar vectors, then $[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]$ is equal to
a) 1
b) 0
c) $-\sqrt{3}$
d) $\sqrt{3}$
3. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two unit vectors inclined to x-axis at anlges 30° and 120°, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|$ equals
a) $\sqrt{\frac{2}{3}}$
b) $\sqrt{2}$
c) $\sqrt{3}$
d) 2
4. If the vectors $\hat{i}-2 x \hat{j}+3 y \hat{k}$ and $\hat{i}+2 x \hat{j}-3 y \hat{k}$ perpendicular, then the locus of (x, y) is
a) A circle
b) An ellipse
c) A hyperbola
d) None of these
5. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be non-zero vectors such that
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=-\frac{1}{4}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \overrightarrow{\mathbf{a}}$. If θ is the acute angle between vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ is equal to
a) $\frac{2 \pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
6. A vector perpendicular to both the vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is
a) $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
b) $\hat{\mathbf{i}}-\hat{\mathbf{j}}$
c) $c(\hat{\mathbf{i}}-\hat{\mathbf{j}}), c$ is a scalar
d) None of these
7. If $\vec{a}, \vec{b}, \vec{c}$ are non-collinear vectors such that $\vec{a}+\vec{b}$ is parallel to \vec{c} and $\vec{c}+\vec{a}$ is parallel to \vec{b}, then
a) $\vec{a}+\vec{b}=\vec{c}$
b) $\vec{a}, \vec{b}, \vec{c}$ taken in order from the sides of a triangle
c) $\vec{b}+\vec{c}=\vec{a}$
d) None of these
8. A force of magnitude $\sqrt{6}$ acting along the line joining the points $A(2,-1,1)$ and $B(3,1,2)$ displaces a particle from A to B. The work done by the force is
a) 6
b) $6 \sqrt{6}$
c) $\sqrt{6}$
d) 12
9. A unit vector $\overrightarrow{\mathbf{a}}$ makes an angle $\frac{\pi}{4}$ with z-axis, if $\overrightarrow{\mathbf{a}}+\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is a unit vector, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $\frac{\hat{\mathbf{i}}}{2}+\frac{\hat{\mathbf{j}}}{2}+\frac{\hat{\mathbf{k}}}{2}$
b) $\frac{\hat{\mathbf{i}}}{2}+\frac{\hat{\mathbf{j}}}{2}-\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
c) $-\frac{\hat{\mathbf{i}}}{2}-\frac{\hat{\mathbf{j}}}{2}+\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
d) $\frac{\hat{\mathbf{i}}}{2}-\frac{\hat{\mathbf{j}}}{2}-\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
10. If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}=144$ and $|\overrightarrow{\mathbf{a}}|=4$ then $|\overrightarrow{\mathbf{b}}|$ is equal to
a) 12
b) 3
c) 8
d) 4
11. If $\overrightarrow{\mathbf{a}}$ is non-zero vector of modulus $|\overrightarrow{\mathbf{a}}|$ and m is a non-zero scalar, then $m \overrightarrow{\mathbf{a}}$ is a unit vector, if
a) $m= \pm 1$
b) $m=|\overrightarrow{\mathbf{a}}|$
c) $m=\frac{1}{|\overrightarrow{\mathbf{a}}|}$
d) $m= \pm 2$
12. If the constant forces $2 \hat{i}-5 \hat{j}+6 \hat{k}$ and $-\hat{i}+2 \hat{j}-\hat{k}$ act on a particle due to which it is displaced from a point $A(4,-3,-2)$ to a point $B(6,1,-3)$, then the work done by the forces is
a) 15 units
b) -15 units
c) 9 units
d) -9 units
13. If P, Q, R are three points with respective position vectors $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $a \hat{i}+b \hat{j}+c \hat{k}$. The points P, Q, R are collinear, if
a) $a=b=c=1$
b) $a=b=c=0$
c) $a=1, b, c \in R$
d) $a=1, c=0, b \in R$
14. The projection of the vector $\vec{a}=4 \hat{i}-3 \hat{j}+2 \hat{k}$ on the axis making equal acute angles with the coordinate axes is
a) 3
b) $\sqrt{3}$
c) $\frac{3}{\sqrt{3}}$
d) None of these
15. The value of $[2 \hat{\mathbf{i}} 3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}]$ is equal to
a) -30
b) -25
c) 0
d) 11
16. $(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c}) \cdot \vec{d}$ equals
a) $[\vec{a} \vec{b} \vec{c}](\vec{b} \cdot \vec{d})$
b) $[\vec{a} \vec{b} \vec{c}](\vec{a} \cdot \vec{d})$
c) $[\vec{a} \vec{b} \vec{c}](\vec{c} \cdot \vec{d})$
d) None of these
17. If the constant force $2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ act on a particle due to which it is displaced from a point $A(4,-3,-2)$ to a point $B(6,1,-3)$ then the work done by the force is
a) 10 units
b) -10 units
c) 9 units
d) None of these
18. If forces of magnitudes 6 and 7 units acting in the directions $\hat{i}-2 \hat{j}+2 \hat{k}$ and $2 \hat{i}-3 \hat{j}-6 \hat{k}$ respectively act on a particle which is displaced from the point $P(2,-1,-3)$ to $Q(5,-1,1)$, then the work done by the forces is
a) 4 units
b) -4 units
c) 7 units
d) -7 units
19. $[\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]$ is equal to
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
b) $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
d) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
20. $A B C D$ is a quadrilateral, P, Q are the mid points of $\overrightarrow{\mathbf{B C}}$ and $\overrightarrow{\mathbf{A D}}$, then $\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{D C}}$ is equal to
a) $3 \overrightarrow{\mathbf{Q P}}$
b) $\overrightarrow{\mathbf{Q P}}$
c) $4 \overrightarrow{\mathbf{Q P}}$
d) $2 \overrightarrow{\mathbf{Q P}}$
