

CLASS: XIIth DATE:

SUBJECT: MATHS DPP NO.: 10

1.	If <i>C</i> is the mid point of <i>AE</i>	B and P is any point outside AB , the	en
----	---	---	----

a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$

b)
$$\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$$

b)
$$\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$$
 c) $\overrightarrow{PA} + \overrightarrow{PB} - 2\overrightarrow{PC} = \overrightarrow{0}$ d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$

d)
$$\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$$

2. The vector equation of the line passing through the points
$$(3,2,1)$$
 and $(-2,1,3)$ is

a) $\vec{r} = 3\hat{i} + 2\hat{j} + \hat{k} + \lambda(-5\hat{i} - \hat{j} + 2\hat{k})$ b) $\vec{r} = 3\hat{i} + 2\hat{j} + \hat{k} + \lambda(-5\hat{i} + \hat{j} + \hat{k})$ c) $\vec{r} = -2\hat{i} + \hat{j} + 3\hat{k} + \lambda(5\hat{i} + \hat{j} + 2\hat{k})$ d) $\vec{r} = -2\hat{i} + \hat{j} + \hat{k} + \lambda(5\hat{i} + \hat{j} + 2\hat{k})$

b)
$$\vec{\mathbf{r}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} + \lambda(-5\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$$

c) $\vec{r} = -2\hat{i} + \hat{j} + 3\hat{k} + \lambda(5\hat{i} + \hat{j} + 2\hat{k})$

d)
$$\vec{r} = -2\hat{i} + \hat{j} + \hat{k} + \lambda(5\hat{i} + \hat{j} + 2\hat{k})$$

The angle between $\vec{\bf a}$ and $\vec{\bf b}$ is $\frac{5\pi}{6}$ and the projection of $\vec{\bf a}$ in the direction of $\vec{\bf b}$ is $\frac{-6}{\sqrt{3}}$ then $|\vec{\bf a}|$ is equal to

a) 6

b)
$$\sqrt{3}/2$$

When a right handed rectangular cartesian system OXYZ rotated about z-axis through $\pi/4$ in the counter-clock-wise sense it is found that a vector \vec{r} has the components $2\sqrt{2}$, $3\sqrt{2}$ and 4. The components of \vec{a} in the *OXYZ* coordinate system are

a)
$$5, -1,4$$

b) 5,
$$-1.4\sqrt{2}$$

c)
$$-1$$
, -5 , $4\sqrt{2}$

d) None of these

5. If $\vec{\mathbf{x}} \cdot \vec{\mathbf{a}} = \vec{\mathbf{x}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{x}} \cdot \vec{\mathbf{c}} = 0$ where $\vec{\mathbf{x}}$ is a non-zero vector. Then, $[\vec{\mathbf{a}} \times \vec{\mathbf{b}} \ \vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}}]$ is equal to

a)
$$[\vec{\mathbf{x}} \, \vec{\mathbf{a}} \, \vec{\mathbf{b}}]^2$$

b)
$$[\vec{\mathbf{x}} \vec{\mathbf{b}} \vec{\mathbf{c}}]^2$$

c)
$$[\vec{\mathbf{x}} \vec{\mathbf{c}} \vec{\mathbf{a}}]^2$$

6. If \overrightarrow{ABCDEF} is regular hexagon, then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ is equal to

b)
$$2 \overrightarrow{AB}$$

c)
$$3\overrightarrow{\mathbf{AB}}$$

d)
$$4\overrightarrow{\mathbf{AB}}$$

The shortest distance between the straight lines through the points

 $A_1 = (6,2,2)$ and $A_2 = (-4,0,-1)$ in the directions of (1,-2,2) and (3,-2,-2) is a) 6

b)8

d)9

8. A unit vector perpendicular to the plane of $\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}$ and $\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is

$$a)\frac{4\hat{\mathbf{i}}+3\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{26}}$$

b)
$$\frac{2\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 3\hat{\mathbf{k}}}{7}$$

b)
$$\frac{2\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 3\hat{\mathbf{k}}}{7}$$
 c) $\frac{3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}}{7}$ d) $\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$

d)
$$\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$$

9. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of points A,B,C,D such that no three of them are collinear and $\vec{a} + \vec{c} = \vec{b} + \vec{d}$, then ABCD is a

a) Rhombus

b) Rectangle

c) Square

d) Parallelogram

10.	If D,E,F are respectively a) $\overrightarrow{\mathbf{DC}}$	y the mid point of AB , A b) $\frac{1}{2}\overrightarrow{\mathbf{BF}}$	C and BC in \triangle ABC, then c) $2 \overrightarrow{BF}$	$\overrightarrow{\mathbf{BE}} + \overrightarrow{\mathbf{AF}}$ is equal to $\mathbf{d})\frac{3}{2}\overrightarrow{\mathbf{BF}}$			
11.	Let \vec{a} and \vec{b} be two unit a) $\sqrt{5}$	t vectors such that angle b) $\sqrt{3}$	between them is 60°. The c) 0	hen, $ ec{\mathbf{a}} - ec{\mathbf{b}} $ is equal to d) 1			
12.		$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is b) $3(\vec{b} \times \vec{c})$	s equal to c) $2(\vec{\mathbf{b}} \times \vec{\mathbf{c}})$	d) 0			
13. a	$ \vec{\mathbf{a}} = 1$, $ \vec{\mathbf{b}} = 3$ and $ \vec{\mathbf{c}} = 5$, then $[\vec{\mathbf{a}} - 2\vec{\mathbf{b}}\vec{\mathbf{b}} - 3\vec{\mathbf{c}}\vec{\mathbf{c}} - 4\vec{\mathbf{a}}]$ is equal to						
	a) 0	b) -24	c) 3600	d) –215			
14. If the area of the parallelogram with \vec{a} and \vec{b} as two adjacent side is 15 sq units, then the area of the parallelogram having $3\vec{a} + 2\vec{b}$ and $\vec{a} + 3\vec{b}$ as two adjacent sides in sq units is a) 120 b) 105 c) 75 d) 45							
	•	•		,			
15.	If $(a \times b) + (a.b)^2 = 14$ a) 16	$ 4 \text{ and } \vec{a} = 4, \text{ then } \vec{b} = 6$	c) 3	d)12			
	If the vectors \vec{c} , $\vec{a} = x\hat{i}$ and \vec{c} is	$+y\hat{i} +z\hat{k}$ and $\vec{b} = \hat{j}$ are su	ich that $ec{a}$, $ec{c}$ and $ec{b}$ form a	a right handed system,			
	a) $z\hat{i} - x\hat{k}$	b) 0	c) yî	d) $-z\hat{i} + x\hat{k}$			
17.	The vectors $2\hat{i} - m\hat{j} + 3$ a) $m = -1/2$ b) $m \in [-2, -1/2]$ c) $m \in R$ d) $m \in (-\infty, -2) \cup (-\infty, -2)$	$m\hat{k}$ and $(1+m)\hat{i} - 2m\hat{j}$ $-1/2, \infty)$	$+$ \hat{k} include an acute ang	gle for			
18. If $ \vec{a} + 3$, $ \vec{a} = 4$, $ \vec{c} = 5$ and \vec{a} , \vec{b} , \vec{c} are such that each is perpendicular to the saum of other two, then $ \vec{a} + \vec{b} + \vec{c} $ is							
	a) $5\sqrt{2}$	b) $\frac{5}{\sqrt{2}}$	c) $10\sqrt{2}$	d) $10\sqrt{3}$			
19.		(\vec{b}, \vec{c}) , the vector $(\vec{b} \times \vec{c}) \times (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{c}) \vec{b}$		d) None of these			
20.	The vector $\cos \alpha \cos \beta \hat{i}$ a) Null vector	+ $\cos \alpha \sin \beta \hat{j}$ + $\sin \alpha \hat{k}$ is b) Unit vector	a c) Constant vector	d) None of these			