CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- VECTOR ALGEBRA

1. If C is the mid point of $A B$ and P is any point outside $A B$, then
a) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}=\overrightarrow{\mathbf{P C}}$
b) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}+2 \overrightarrow{\mathbf{P C}}=\overrightarrow{0}$
c) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}-2 \overrightarrow{\mathbf{P C}}=\overrightarrow{0}$
d) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}+2 \overrightarrow{\mathbf{P C}}=\overrightarrow{0}$
2. The vector equation of the line passing through the points $(3,2,1)$ and $(-2,1,3)$ is
a) $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(-5 \hat{\dot{\mathbf{i}}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
b) $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(-5 \hat{\dot{\mathbf{i}}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
c) $\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
d) $\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
3. The angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{5 \pi}{6}$ and the projection of $\overrightarrow{\mathbf{a}}$ in the direction of $\overrightarrow{\mathbf{b}}$ is $\frac{-6}{\sqrt{3}}$ then $|\overrightarrow{\mathbf{a}}|$ is equal to
a) 6
b) $\sqrt{3} / 2$
c) 12
d) 4
4. When a right handed rectangular cartesian system $O X Y Z$ rotated about z-axis through $\pi / 4$ in the counter-clock-wise sense it is found that a vector \vec{r} has the components $2 \sqrt{2}, 3 \sqrt{2}$ and 4 . The components of \vec{a} in the $O X Y Z$ coordinate system are
a) $5,-1,4$
b) $5,-1,4 \sqrt{2}$
c) $-1,-5,4 \sqrt{2}$
d) None of these
5. If $\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{c}}=0$ where $\overrightarrow{\mathbf{x}}$ is a non-zero vector. Then, $[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]$ is equal to
a) $[\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]^{2}$
b) $[\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
c) $[\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]^{2}$
d) 0
6. If $A B C D E F$ is regular hexagon, then $\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}$ is equal to
a) 0
b) $2 \overrightarrow{\mathbf{A B}}$
c) $3 \overrightarrow{\mathbf{A B}}$
d) $4 \overrightarrow{\mathbf{A B}}$
7. The shortest distance between the straight lines through the points $A_{1}=(6,2,2)$ and $A_{2}=(-4,0,-1)$ in the directions of $(1,-2,2)$ and $(3,-2,-2)$ is
a) 6
b) 8
c) 12
d) 9
8. A unit vector perpendicular to the plane of $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ is
a) $\frac{4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{26}}$
b) $\frac{2 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}}{7}$
c) $\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}}{7}$
d) $\frac{2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}}{7}$
9. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then $A B C D$ is a
a) Rhombus
b) Rectangle
c) Square
d) Parallelogram
10. If D, E, F are respectively the mid point of $A B, A C$ and $B C$ in $\triangle A B C$, then $\overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{A F}}$ is equal to
a) $\overrightarrow{\mathbf{D C}}$
b) $\frac{1}{2} \overrightarrow{\mathbf{B F}}$
c) $2 \overrightarrow{\mathbf{B F}}$
d) $\frac{3}{2} \overrightarrow{\mathbf{B F}}$
11. Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two unit vectors such that angle between them is 60°. Then, $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$ is equal to
a) $\sqrt{5}$
b) $\sqrt{3}$
c) 0
d) 1
12. If $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$, then $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ is equal to
a) $6(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
b) $3(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
c) $2(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
d) $\overrightarrow{\mathbf{0}}$
13. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are the three vectors mutually perpendicular to each other and $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=3$ and $|\overrightarrow{\mathbf{c}}|=5$, then $[\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}}]$ is equal to
a) 0
b) -24
c) 3600
d) -215
14. If the area of the parallelogram with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ as two adjacent side is 15 sq units, then the area of the parallelogram having $3 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}$ as two adjacent sides in sq units is
a) 120
b) 105
c) 75
d) 45
15. If $(\vec{a} \times \vec{b})+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then $|\vec{b}|=$
a) 16
b) 8
c) 3
d) 12
16. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{i}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right handed system, then \vec{c} is
a) $z \hat{i}-x \hat{k}$
b) $\overrightarrow{0}$
c) $y \hat{i}$
d) $-z \hat{i}+x \hat{k}$
17. The vectors $2 \hat{i}-m \hat{j}+3 m \hat{k}$ and $(1+m) \hat{i}-2 m \hat{j}+\hat{k}$ include an acute angle for
a) $m=-1 / 2$
b) $m \in[-2,-1 / 2]$
c) $m \in R$
d) $m \in(-\infty,-2) \cup(-1 / 2, \infty)$
18. If $|\overrightarrow{\mathbf{a}}|+3,|\overrightarrow{\mathbf{a}}|=4,|\overrightarrow{\mathbf{c}}|=5$ and $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are such that each is perpendicular to the saum of other two, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$ is
a) $5 \sqrt{2}$
b) $\frac{5}{\sqrt{2}}$
c) $10 \sqrt{2}$
d) $10 \sqrt{3}$
19. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, the vector $(\vec{b} \times \vec{c}) \times \vec{a}$ equals
a) $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}$
b) $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}$
c) $(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{b}$
d) None of these
20. The vector $\cos \alpha \cos \beta \hat{i}+\cos \alpha \sin \beta \hat{j}+\sin \alpha \hat{k}$ is a
a) Null vector
b) Unit vector
c) Constant vector
d) None of these
