

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 1

Topic :- vector algebra

1. If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then the angle between \vec{a} and \vec{b} is a) $\pi/6$ b) $2\pi/3$ c) $5\pi/3$ d) $\pi/3$

2. If \vec{a} is perpendicular to \vec{b} and $\vec{c}|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$ and the angle between \vec{b} and \vec{c} is $\frac{2\pi}{3}$, then $[\vec{a} \ \vec{b} \ \vec{c}]$ is equal to

a) $4\sqrt{3}$ b) $6\sqrt{3}$ c) $12\sqrt{3}$ d) $18\sqrt{3}$

3. The position vectors of the points *A*,*B*,*C* are $(2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$, $(3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ and $(\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 3\hat{\mathbf{k}})$ respectively. These points

a) Form an isosceles triangle c) Are collinear b) Form a right angled triangled) Form a scalene triangle

4. If $\vec{a} = 4\hat{i} + 6\hat{j}$ and $\vec{b} = 3\hat{j} + 4\hat{k}$, then the vector form of component of \vec{a} along \vec{b} is a) $\frac{18}{10\sqrt{3}}(3\hat{j} + 4\hat{k})$ b) $\frac{18}{25}(3\hat{j} + 4\hat{k})$ c) $\frac{18}{\sqrt{3}}(3\hat{j} + 4\hat{k})$ d) $3\hat{j} + 4\hat{k}$

5. Two vectors \vec{a} and \vec{b} are non-collinear. If vectors $\vec{c} = (x-2)\vec{a} + \vec{b}$ and $\vec{d} = (2x+1)\vec{a} - \vec{b}$ are collinear, then x =a) 1/3 b) 1/2 c) 1 d) 0

6. Through the point $P(\alpha,\beta,\gamma)$ a plane is drawn at right angles to *OP* to meet the coordinate axes are *A*,*B*,*C* respectively. If *OP* = *p* then equation of plane $\overrightarrow{A,B,C}$ is

a) $\alpha x + \beta y + \gamma z = p$ b) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = p$ c) $2\alpha x + 2\beta y + 2\gamma z = p^2$ d) $\alpha x + \beta y + \gamma z = p^2$

7. If *ABCDEF* is a regular hexagon with $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then \overrightarrow{CE} equals a) $\overrightarrow{b} - \overrightarrow{a}$ b) $-\overrightarrow{b}$ c) $\overrightarrow{b} - 2\overrightarrow{a}$ d) None of these

```
8. A unit vector perpendicular to both \hat{i} + \hat{j} and \hat{j} + \hat{k}, is

a) \hat{i} - \hat{j} + \hat{k} b) \hat{i} + \hat{j} + \hat{k} c) \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}} d) \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}
```

9. Let *ABCD* be the parallelogram whose sides *AB* and *AD* are represented by the vectors

 $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ respectively. Then, if \vec{a} is a unit vector parallel to \overrightarrow{AC} , then \vec{a} equal to a) $\frac{1}{2}(3\hat{i}-6\hat{j}-2\hat{k})$ b) $\frac{1}{2}(3\hat{i}+6\hat{j}+2\hat{k})$ c) $\frac{1}{2}(3\hat{i}-6\hat{j}-3\hat{k})$ d) $\frac{1}{2}(3\hat{i}+6\hat{j}-2\hat{k})$ 10. The value of *b* such that the scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector parallel to the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $b\hat{i} + 2\hat{j} + 3\hat{k}$ is one, is a) —2 b) -1 d)1 11. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and $x\vec{a} + y\vec{b} + z\vec{c} = 0$, then a) At least of one of *x*,*y*,*z* is zero b) x,y,z are necessarily zero c) None of them are zero d) None of these 12. The ratio in which $\hat{i} + 2\hat{j} + 3\hat{k}$ divides the join of $-2\hat{i} + 3\hat{j} + 5\hat{k}$ and $7\hat{i} - \hat{k}$, is a) 1 : 2 c) 3 : 4 b)2:3 d)1:4 13. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the expression $(\vec{a} - \vec{b}) \cdot \{(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})\}$ equals c) $\left[\vec{a}\vec{b}\vec{c}\right]^2$ a) $\left[\vec{a}\vec{b}\vec{c}\right]$ b) $2[\vec{a}\vec{b}\vec{c}]$ d) None of these 14. The point of intersection of the lines $\vec{\mathbf{r}} = 7\hat{\mathbf{i}} + 10\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + s(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ and $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + t(\hat{\mathbf{k}} + 1)\hat{\mathbf{k}} + t($ $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$) is b) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ c) $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ $d\hat{\mathbf{j}}\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ a) $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ 15. let \vec{p} and \vec{q} be the position vectors of *P* and *Q* respectively, with respect to *O* and $|\vec{p}| = p$, $|\vec{q}| = q$. The points *R* and *S* divide *PQ* internally and externally in the ratio 2 : 3 respectively. If \vec{OR} and \vec{OS} are perpendicular, then b) $4p^2 = 9a^2$ a) $9p^2 = 4q^2$ c) 9p = 4qd) 4p = 9q16. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{k}$ are two vectors, then the point of intersection of two lines $\vec{r} \times \vec{a} = \vec{b}$ $\times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is c) $3\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ b) $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ d) $3\hat{i} - \hat{i} + \hat{k}$ a) $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ 17. If $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} \times (\vec{C} \times \vec{A})$ and $[\vec{A} \ \vec{B} \ \vec{C}] \neq 0$, then $\vec{A} \times (\vec{B} \times \vec{C})$ is equal to c) $\vec{\mathbf{B}} \times \vec{\mathbf{C}}$ a) **0** b) $\vec{A} \times \vec{B}$ d) $\vec{\mathbf{C}} \times \vec{\mathbf{A}}$ 18. If \vec{a} and \vec{b} are two vectors, then the equality $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$ holds a) Only if $\vec{a} = \vec{b} = \vec{0}$ b) For all \vec{a}, \vec{b} c) Only if $\vec{a} = \lambda \vec{b}$, $\lambda > 0$ or $\vec{a} = \vec{b} = \vec{0}$ d) None of these 19. Let $\vec{\mathbf{a}} = \hat{\vec{\mathbf{i}}} - \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = x\hat{\vec{\mathbf{i}}} + \hat{\vec{\mathbf{j}}} + (1-x)\hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = y\hat{\vec{\mathbf{i}}} + x\hat{\vec{\mathbf{j}}} + (1+x-y)\hat{\mathbf{k}}$. Then $[\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}]$ depends on

20. If the position vectors of three points *A*, *B*, *C* are respectively $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$ and $7\hat{i} + 4\hat{j} + 9\hat{k}$, then the unit vector perpendicular to the plane of triangle *ABC* is

a) 31 <i>î —</i> 18 <i>ĵ —9k</i>	b) $\frac{31\hat{i} - 38\hat{j} - 9\hat{k}}{\sqrt{2486}}$	c) $\frac{31\hat{i} + 38\hat{j} + 9\hat{k}}{\sqrt{2486}}$	d)None of these
----------------------------------	---	---	-----------------

