CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- vector algebra

1. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then the angle between \vec{a} and \vec{b} is
a) $\pi / 6$
b) $2 \pi / 3$
c) $5 \pi / 3$
d) $\pi / 3$
2. If $\overrightarrow{\mathbf{a}}$ is perpendicular to $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}|\overrightarrow{\mathbf{a}}|=2,|\overrightarrow{\mathbf{b}}|=3,|\overrightarrow{\mathbf{c}}|=4$ and the angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is $\frac{2 \pi}{3}$, then [$\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ is equal to
a) $4 \sqrt{3}$
b) $6 \sqrt{3}$
c) $12 \sqrt{3}$
d) $18 \sqrt{3}$
3. The position vectors of the points A, B, C are $(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}),(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $(\hat{\mathbf{i}}+4 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ respectively. These points
a) Form an isosceles triangle
b) Form a right angled triangle
c) Are collinear
d) Form a scalene triangle
4. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{j}+4 \hat{k}$, then the vector form of component of \vec{a} along \vec{b} is
a) $\frac{18}{10 \sqrt{3}}(3 \hat{j}+4 \hat{k})$
b) $\frac{18}{25}(3 \hat{j}+4 \hat{k})$
c) $\frac{18}{\sqrt{3}}(3 \hat{j}+4 \hat{k})$
d) $3 \hat{j}+4 \hat{k}$
5. Two vectors \vec{a} and \vec{b} are non-collinear. If vectors $\vec{c}=(x-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 x+1) \vec{a}-\vec{b}$ are collinear, then $x=$
a) $1 / 3$
b) $1 / 2$
c) 1
d) 0
6. Through the point $P(\alpha, \beta, \gamma)$ a plane is drawn at right angles to $O P$ to meet the coordinate axes are A, B, C respectively. If $O P=p$ then equation of plane $\overrightarrow{A, B, C}$ is
a) $\alpha x+\beta y+\gamma z=p$
b) $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=p$
c) $2 \alpha x+2 \beta y+2 \gamma z=p^{2}$
d) $\alpha x+\beta y+\gamma z=p^{2}$
7. If $A B C D E F$ is a regular hexagon with $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{C E}}$ equals
a) $\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}$
b) $-\overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{a}}$
d) None of these
8. A unit vector perpendicular to both $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$, is
a) $\hat{i}-\hat{j}+\hat{k}$
b) $\hat{i}+\hat{j}+\hat{k}$
c) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
d) $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
9. Let $A B C D$ be the parallelogram whose sides $A B$ and $A D$ are represented by the vectors
$2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ respectively. Then, if $\overrightarrow{\mathbf{a}}$ is a unit vector parallel to $\overrightarrow{\mathbf{A C}}$, then $\overrightarrow{\mathbf{a}}$ equal to
a) $\frac{1}{3}(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
b) $\frac{1}{3}(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
c) $\frac{1}{7}(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$
d) $\frac{1}{7}(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
10. The value of b such that the scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with the unit vector parallel to the sum of the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $b \hat{i}+2 \hat{j}+3 \hat{k}$ is one, is
a) -2
b) -1
c) 0
d) 1
11. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and $x \vec{a}+y \vec{b}+z \vec{c}=0$, then
a) At least of one of x, y, z is zero
b) x, y, z are necessarily zero
c) None of them are zero
d) None of these
12. The ratio in which $\hat{i}+2 \hat{j}+3 \hat{k}$ divides the join of $-2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $7 \hat{i}-\hat{k}$, is
a) $1: 2$
b) $2: 3$
c) $3: 4$
d) $1: 4$
13. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the expression $(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}$ equals
a) $[\vec{a} \vec{b} \vec{c}]$
b) $2[\vec{a} \vec{b} \vec{c}]$
c) $[\vec{a} \vec{b} \vec{c}]^{2}$
d) None of these
14. The point of intersection of the lines $\overrightarrow{\mathbf{r}}=7 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+s(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}+t($ $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})$ is
a) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
c) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
15. let \vec{p} and \vec{q} be the position vectors of P and Q respectively, with respect to O and $|\vec{p}|=p,|\vec{q}|=q$. The points R and S divide $P Q$ internally and externally in the ratio $2: 3$ respectively. If $O \vec{R}$ and $\vec{O} S$ are perpendicular, then
a) $9 p^{2}=4 q^{2}$
b) $4 p^{2}=9 q^{2}$
c) $9 p=4 q$
d) $4 p=9 q$
16. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$ are two vectors, then the point of intersection of two lines $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}$ $\times \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is
a) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
d) $3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
17. If $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{B}} \times(\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}})$ and $[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}] \neq 0$, then $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})$ is equal to
a) $\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$
c) $\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}$
d) $\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}$
18. If \vec{a} and \vec{b} are two vectors, then the equality $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ holds
a) Only if $\vec{a}=\vec{b}=\overrightarrow{0}$
b) For all \vec{a}, \vec{b}
c) Only if $\vec{a}=\lambda \vec{b}, \lambda>0$ or $\vec{a}=\vec{b}=\overrightarrow{0}$
d) None of these
19. Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=x \hat{\mathbf{i}}+\hat{\mathbf{j}}+(1-x) \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=y \hat{\mathbf{i}}+x \hat{\mathbf{j}}+(1+x-y) \hat{\mathbf{k}}$. Then $[\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}]$ depends on
a) neither x nor y
b) both x and y
c) only x
d) only y
20. If the position vectors of three points A, B, C are respectively $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $7 \hat{i}+4 \hat{j}$ $+9 \hat{k}$, then the unit vector perpendicular to the plane of triangle $A B C$ is
a) $31 \hat{i}-18 \hat{j}-9 \hat{k}$
b) $\frac{31 \hat{i}-38 \hat{j}-9 \hat{k}}{\sqrt{2486}}$
c) $\frac{31 \hat{i}+38 \hat{j}+9 \hat{k}}{\sqrt{2486}}$
d) None of these

