CLASS : XIIth
DATE :

SOLUTIONS

TOpic:-VECTOR ALGEBRA

1
(c)

By the properties of midpoint theorem,
$\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}=2 \overrightarrow{\mathbf{P C}}$
2 (a)
The vector equation of line passing through points $(3,2,1)$ and $(-2,1,3)$
$\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda[(-2-3) \hat{\mathbf{i}}+(1-2) \hat{\mathbf{j}}+(3-1) \hat{\mathbf{k}}]$
$=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(-5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
3
(d)
$\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \frac{5 \pi}{6}$
$=-\frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sqrt{3}}{2}$
Since, the projection of $\overrightarrow{\mathbf{a}}$ in the direction of
$\overrightarrow{\mathbf{b}}=-\frac{6}{\sqrt{3}}$
$\Rightarrow-\frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sqrt{3}}{2|\overrightarrow{\mathbf{b}}|}=-\frac{6}{\sqrt{3}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|=\frac{6 \times 2}{3}=4$
4 (d)
Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in $O X Y Z$ system
Also, let $\vec{r}=X \hat{i}+Y \hat{j}+Z \hat{k}$ in the new coordinate system
Since the right handed rectangular system $O X Y Z$ is rotated about z-axis through $\frac{\pi}{4}$ in anticlockwise direction. Therefore,
$x=X \cos \theta-Y \sin \theta$ and $y=X \sin \theta+Y \cos \theta$
$\Rightarrow x=X \cos \frac{\pi}{4}-Y \sin \frac{\pi}{4}, y=X \sin \frac{\pi}{4}+Y \cos \frac{\pi}{4}$
and, $z=Z$
It is given that $X=2 \sqrt{2}, Y=3 \sqrt{2}$ and $Z=4$
$\therefore x=2-3=-1, y=5$ and $z=4$
Hence, $\vec{r}=-\hat{i}+5 \hat{j}+4 \hat{k}$

ALITER Let $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2}$ and l_{3}, m_{3}, n_{3} be the direction cosines of the new axes with respect to the old axes. Then,
$l_{1}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, m_{1}=\cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, n_{1}=\cos \frac{\pi}{2}=0$
$l_{2}=\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}, m_{2}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, n_{2}=\cos \frac{\pi}{2}=0$
$l_{3}=\cos \frac{\pi}{2}=0, m_{3}=\cos \frac{\pi}{2}=0, n_{3}=\cos 0=1$
Let $x^{\prime}, y^{\prime}, z^{\prime}$ and x, y, z be the components of the given vector with respect to new and old axes. Then,
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3}\end{array}\right]\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \sqrt{2} \\ 3 \sqrt{2} \\ 4\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}2 & -3 & +0 \\ 2 & +3 & +0 \\ 0 & 0 & +4\end{array}\right]=\left[\begin{array}{c}-1 \\ 5 \\ 4\end{array}\right]$
Hence, the components of \vec{a} in the $O x y z$ coordinate system are $-1,5,4$
5 (d)
$\because \overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{c}}=0$
For non-zero vector $\overrightarrow{\mathbf{x}}$
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0 \quad$ (three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar)
and $[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}=0$
6
(d)
$A B C D E F$ is a regular hexagon. We know from the hexagon that $\overrightarrow{\mathbf{A D}}$ is parallel to $\overrightarrow{\mathbf{B C}}$.
$\Rightarrow \overrightarrow{\mathbf{A D}}=2 \overrightarrow{\mathbf{B C}}$
Similarly, $\overrightarrow{\mathbf{E B}}$ is a parallel to $\overrightarrow{\mathbf{F A}}$

$\Rightarrow \overrightarrow{\mathbf{E B}}=2 \overrightarrow{\mathbf{F A}}$
and $\overrightarrow{\mathbf{F C}}$ is parallel to $\overrightarrow{\mathbf{A B}}$.
$\Rightarrow \overrightarrow{\mathbf{F C}}=2 \overrightarrow{\mathbf{A B}}$
Thus, $\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}=2 \overrightarrow{\mathbf{B C}}+2 \overrightarrow{\mathbf{F A}}+2 \overrightarrow{\mathbf{A B}}$
$=2(\overrightarrow{\mathbf{F A}}+\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}})$
$=2(\overrightarrow{\mathbf{F C}})=2(2 \overrightarrow{\mathbf{A B}})=4 \overrightarrow{\mathbf{A B}}$
7 (d)
Here, $\overrightarrow{\mathbf{a}_{1}}=6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{a}_{2}}=-4 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}-\hat{\mathbf{k}}$,
$\overrightarrow{\mathbf{b}_{1}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}_{2}}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
\therefore Shortest distance
$=\left|\frac{\left(\overrightarrow{\mathbf{a}_{2}}-\overrightarrow{\mathbf{a}_{1}}\right) \cdot\left(\overrightarrow{\mathbf{b}_{1}} \times \overrightarrow{\mathbf{b}_{2}}\right)}{\left|\overrightarrow{\mathbf{b}_{1}} \times \overrightarrow{\mathbf{b}_{2}}\right|}\right|$
$=\left|\frac{(-10 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \cdot(8 \hat{\mathbf{i}}+8 \hat{\hat{\mathbf{j}}}+4 \hat{\mathbf{k}})}{\sqrt{64+64+16}}\right|$
$=\left|-\frac{108}{12}\right|=9$
8
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -6 & -3 \\ 4 & 3 & -1\end{array}\right|=15 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+30 \hat{\mathbf{k}}$
and $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{15^{2}+(-10)^{2}+(30)^{2}}=35$
\therefore Required vector $=\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}}{7}$
10
(a)

Let O be the origin

$\therefore \overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{A F}}=\overrightarrow{\mathbf{O E}}-\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O F}}-\overrightarrow{\mathbf{O A}}$
$=\frac{\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O C}}}{2}-\overrightarrow{\mathbf{O B}}+\frac{\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O C}}}{2}-\overrightarrow{\mathbf{O A}}$
$=\frac{\overrightarrow{\mathbf{O C}}}{2}+\frac{\overrightarrow{\mathbf{O C}}}{2}+\frac{\overrightarrow{\mathbf{O A}}}{2}-\overrightarrow{\mathbf{0 A}}+\frac{\overrightarrow{\mathbf{O B}}}{2}-\overrightarrow{\mathbf{0 B}}$
$=\overrightarrow{\mathbf{O C}}-\frac{\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O B}}}{2}=\overrightarrow{\mathbf{O C}}-\overrightarrow{\mathbf{O D}}=\overrightarrow{\mathbf{D C}}$
11 (d)
$|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=1+1-2 \cos 60^{\circ}=2-1$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=1$
12
(b)

Given, $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow 2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{c}}$
Taking cross product with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ respectively, we get
$2(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}})+3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$
$\Rightarrow 3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
and $2(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})+3(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
$\Rightarrow 2(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \ldots .$. (ii)
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
$=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \quad$ [using Eq. (i)]
$=4(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
$=2(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ [using Eq. (ii)]
$=3(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
13 (d)
$[\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}}]$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot\{\overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}})\}$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+12 \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\}$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}+4 \overrightarrow{\mathbf{c}}+12 \overrightarrow{\mathbf{b}})$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}-24 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}$
$=1-24 \times 9=1-216=-215$
14
(b)

Given, area $=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=15$
If the sides are $(3 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}})$ and $(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}})$, then
Area of parallelogram
$=|(3 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}})|=7|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$=7 \times 15=105$ sq units
18
(a)

Given, $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0 \Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
$\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}})=0$
$\Rightarrow \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
and $\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=0$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$

Now, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=9+16+25+0=50$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|=5 \sqrt{2}$
19
(b)

We have,
$(\vec{b} \times \vec{c}) \times \vec{a}=-\{\vec{a} \times(\vec{b} \times \vec{c})\}$
$\Rightarrow(\vec{b} \times \vec{c}) \times \vec{a}=-\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}\}=(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | A | D | D | D | D | D | C | D | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | D | B | D | B | C | A | D | A | B | B |
| | | | | | | | | | | |

