

CLASS : XIIth DATE :

SOLUTIONS

SUBJECT : MATHS DPP NO. :1

Topic :-vector algebra

1 (d)										
We have										
$ \vec{a} = 2 \vec{b} = 5$ and $ \vec{a} = 7$										
a = 3, $ b = 3$ and $ c = 7$	ı									
Let θ be the angle between a and \vec{a}	nd b									
Now, $a + b + c = 0$										
$\Rightarrow \vec{c} ^2 = \vec{a} + b $										
$\Rightarrow \vec{c} ^2 = \vec{a} ^2 + \vec{b} ^2 + 2\vec{a}\cdot\vec{b}$										
$\Rightarrow \vec{c} ^{2} = \vec{a} ^{2} + \vec{b} ^{2} = 2 \vec{a} \vec{b} \cos\theta$	s <i>θ</i>									
$\Rightarrow 49 = 9 + 25 + 2 \times 3 \times 5 \cos \theta$	9									
$\Rightarrow 15 = 30 \cos \theta \Rightarrow \cos \theta = 1/2 \Rightarrow \theta = \pi/3$										
2 (c)										
$\therefore [\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}] = \vec{\mathbf{a}} \cdot \left(\vec{\mathbf{b}} \vec{\mathbf{c}} \sin \frac{2\pi}{3} \hat{\mathbf{n}} \right)$										
$= \vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}} \left(\sin\frac{2\pi}{3}\right)$										
$\left[\because \vec{\mathbf{a}} \cdot \hat{\mathbf{n}} = \vec{\mathbf{a}} \hat{\mathbf{n}} \middle \cos 0^\circ = \vec{\mathbf{a}} \right]$										
$= 2 \times 3 \times 4 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$										
3 (a)										
Given that, $\overrightarrow{\mathbf{OA}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$, $\overrightarrow{\mathbf{OB}}$	$\hat{\mathbf{s}} = 3\hat{\mathbf{i}}$	$-2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\overline{00}$	$\vec{\mathbf{L}} = \hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$							
$\overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{OB}} - \overrightarrow{\mathbf{OA}}$										
$= (3-2)\hat{\mathbf{i}} + (-2-1)\hat{\mathbf{j}} + (1+1)\hat{\mathbf{k}}$										
$=\hat{\mathbf{i}}-3\hat{\mathbf{j}}+2\hat{\mathbf{k}}$										
$ \vec{\mathbf{AB}} = \sqrt{1^2 + (-3)^2 + 2^2}$										
$=\sqrt{1+9+4}=\sqrt{14}$										
$\overrightarrow{\mathbf{BC}} = \overrightarrow{\mathbf{OC}} - \overrightarrow{\mathbf{OB}}$										
$= (1-3)\hat{\mathbf{i}} + (4+2)\hat{\mathbf{j}} + (-3-3)\hat{\mathbf{j}}$	- 1) ƙ									
$= -2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$										
$ \overrightarrow{\mathbf{BC}} = \sqrt{(-2)^2 + 6^2 + (-4)^2}$										
$=\sqrt{4+36+16}=\sqrt{56}$										
$\overrightarrow{\mathbf{CA}} = \overrightarrow{\mathbf{OA}} - \overrightarrow{\mathbf{OC}}$										
$= (2-1)\hat{\mathbf{i}} + (1-4)\hat{\mathbf{j}} + (-1+1)\hat{\mathbf{j}}$	- 3) ƙ									

 $= \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $|\overrightarrow{\mathbf{CA}}| = \sqrt{1^2 + (-3)^2 + (2)^2}$ $=\sqrt{1+9+4}=\sqrt{14}$ It is clear that two sides of a triangle are equal. ∴ Points *A*,*B*,*C* from an isosceles triangle. 4 (b) The component of \vec{a} along \vec{b} is given by $\left\{\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^{2}}\right\} = \frac{18}{25}(3\hat{j}+4\hat{k})$ 5 (a) It is given that \vec{c} and \vec{d} are collinear vectors $\therefore \vec{c} = \lambda \vec{d}$ for some scalar λ $\Rightarrow (x-2)\vec{a} + \vec{b} = \lambda \{(2x+1)\vec{a} - \vec{b}\}$ $\Rightarrow \{x - 2 - \lambda(2x + 1)\}\vec{a} + (\lambda + 1)\vec{b} = \vec{0}$ $\Rightarrow \lambda + 1 = 0$ and $x - 2 - \lambda(2x + 1) = 0$ [$\because \vec{a}, \vec{b}$ are non-collinear] $\Rightarrow \lambda = -1 \text{ and } x = \frac{1}{3}$ 6 (a) Equation of plane is $\vec{\mathbf{r}} \cdot \hat{\mathbf{n}} = d$, where *d* is the perpendicular distance of the plane from origin \therefore Required plane is $(\alpha x + \beta y + \gamma z) = p$ 7 (c) In $\Delta A BC$, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC}$ \Rightarrow $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$ AD is parallel to BC and AD = 2 BCΕ

$$\therefore \overrightarrow{AD} = 2\overrightarrow{b}$$
In $\triangle ACD$, $\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$

$$\implies \overrightarrow{CD} = 2\overrightarrow{b} - (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{b} - \overrightarrow{a}$$
Now, $\overrightarrow{CE} = \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{b} - 2\overrightarrow{a}$
9 (d)
Let $\overrightarrow{R}_1 = 2\widehat{i} + 4\widehat{j} - 5\widehat{k}$
and $\overrightarrow{R}_2 = \widehat{i} + 2\widehat{j} + 3\widehat{k}$

 R_1 $\therefore \vec{\mathbf{R}} (\text{along } \vec{\mathbf{AC}}) = \vec{\mathbf{R}}_1 + \vec{\mathbf{R}}_2 = 3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{a}} \text{ (unit vector angle } \vec{AC} \text{)} = \frac{\vec{\mathbf{R}}}{|\vec{\mathbf{R}}|} = \frac{3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}}{\sqrt{9 + 36 + 4}}$ $=\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})$ 11 (b) Since \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors. Therefore, \vec{a} , \vec{b} , \vec{c} are linearly independent vectors $\therefore x\vec{a} + y\vec{b} + z\vec{c} = \vec{0} \Rightarrow x = y = z = 0$ 12 (a) Suppose point $\hat{i} + 2\hat{j} + 3\hat{k}$ divides the join of points $-2\hat{i} + 3\hat{j} + 5\hat{k}$ and $7\hat{i} - \hat{k}$ in the ratio λ :1. Then, $\hat{i} + 2\hat{j} + 3\hat{k} = \frac{\lambda(7\hat{i} - \hat{k}) + (-2\hat{i} + 3\hat{j} + 5\hat{k})}{\lambda + 1}$ $\Rightarrow (\lambda + 1)\hat{i} + 2(\lambda + 1)\hat{j} + 3(\lambda + 1)\hat{k} = (7\lambda - 2)\hat{i} + 3\hat{j} + (-\lambda + 5)\hat{k}$ $\Rightarrow \lambda + 1 = 7\lambda - 2$, $2(\lambda + 1) = 3$ and $3(\lambda + 1) = -\lambda + 5$ $\Rightarrow \lambda = \frac{1}{2}$ Hence, required ratio is 1:2 13 (d) Clearly, $\vec{a} - \vec{b} + \vec{b} - \vec{c} + \vec{c} - \vec{a} = \vec{0}$ $\therefore \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}$ are coplanar $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} \cdot \vec{c}) \times (\vec{c} - \vec{a}) \} = 0$ 314 (d) Two given lines intersect, if $7\hat{\mathbf{i}} + 10\hat{\mathbf{j}} + 13\hat{\mathbf{k}} + s(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ $= 3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + t(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$ \Rightarrow (7 + 2s) $\hat{\mathbf{i}}$ + (10 + 3s) $\hat{\mathbf{j}}$ + (13 + 4s) $\hat{\mathbf{k}}$ $= (3+t)\hat{\mathbf{i}} + (5+2t)\hat{\mathbf{j}} + (7+3t)\hat{\mathbf{k}}$ \Rightarrow 7 + 2s = 3 + t $\Rightarrow 2s - t = -4$...(i) 10 + 3s = 5 + 2t $\Rightarrow 3s - 2t = -5$...(ii) and 13 + 4s = 7 + 3t $\Rightarrow 4s - 3t = -6$...(iii) On solving Eqs. (i) and (iii), we get s = -3, t = -2∴ Required line is

 $7\hat{i} + 10\hat{j} + 13\hat{k} + (-3)[2\hat{i} + 3\hat{j} + 4\hat{k}]$ $\Rightarrow \dot{\mathbf{i}} + \dot{\mathbf{j}} + \hat{\mathbf{k}}$ is the required line. 16 (c) Given that, $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{k}$ Let $\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then $\vec{\mathbf{r}} \times \vec{\mathbf{a}} = \vec{\mathbf{b}} \times \vec{\mathbf{a}} \Rightarrow (\vec{\mathbf{r}} - \vec{\mathbf{b}}) \times \vec{\mathbf{a}} = \vec{\mathbf{0}}$ Now, $\vec{\mathbf{r}} - \vec{\mathbf{b}} = (x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) - (2\hat{\mathbf{i}} - \hat{\mathbf{k}})$ $= (x-2)\hat{i} + y\hat{j} + (z+1)\hat{k}$ $\therefore (\vec{\mathbf{r}} - \vec{\mathbf{b}}) \times \vec{\mathbf{a}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x - 2 & y & z + 1 \\ 1 & 1 & 0 \end{vmatrix} = \vec{\mathbf{0}}$ $\Rightarrow -(z+1)\hat{\mathbf{i}}+(z+1)\hat{\mathbf{j}}+(x-2-y)\hat{\mathbf{k}}=\vec{\mathbf{0}}$ On equating the coefficient of \hat{i},\hat{j} and \hat{k} , we get z = -1, x - y = 2(i) Now, $\vec{\mathbf{r}} \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}} \Rightarrow (\vec{\mathbf{r}} - \vec{\mathbf{a}}) \times \vec{\mathbf{b}} = \vec{\mathbf{0}}$ And $\vec{\mathbf{r}} - \vec{\mathbf{a}} = (x-1)\hat{\mathbf{i}} + (y-1)\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ $\therefore (\vec{\mathbf{r}} - \vec{\mathbf{a}}) \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x & 1 & y & 1 \\ 2 & 0 & 1 \end{vmatrix} = \vec{\mathbf{0}}$ $\Rightarrow (-y+1)\hat{i} - \hat{j}(-x+1-2z) + (-2y+2)\hat{k} = \vec{0}$ $\Rightarrow y = 1, x + 2z = 1$...(ii) From Eqs. (i) and (ii), we get x = 3, y = 1 z = -1 $\therefore \vec{\mathbf{r}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ 17 (a) Given, $\vec{\mathbf{A}} \times (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = \vec{\mathbf{B}} \times (\vec{\mathbf{C}} \times \vec{\mathbf{A}}) \dots (i)$ Also, $[\vec{A} \ \vec{B} \ \vec{C}] \neq 0$ *ie*. \vec{A} , \vec{B} , \vec{C} are not coplanar. ∴ From Eq. (i) $(\vec{\mathbf{A}} \cdot \vec{\mathbf{C}}) - (\vec{\mathbf{A}} \cdot \vec{\mathbf{B}})\vec{\mathbf{C}} = (\vec{\mathbf{B}} \cdot \vec{\mathbf{A}})\vec{\mathbf{C}} - (\vec{\mathbf{B}} \cdot \vec{\mathbf{C}})\vec{\mathbf{A}}$ $\Rightarrow (\vec{B} \cdot \vec{C})\vec{A} + (\vec{A} \cdot \vec{C})\vec{B} - [(\vec{A} \cdot \vec{B}) + (\vec{B} \cdot \vec{C})]\vec{C} = \vec{0}$ $\Rightarrow \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{C} = \vec{A} \cdot \vec{B} = \vec{0}$ $\left[\because \left[\vec{\mathbf{A}} \ \vec{\mathbf{B}} \ \vec{\mathbf{C}} \right] \neq 0 \right]$ Now, consider $\vec{\mathbf{A}} \times (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = (\vec{\mathbf{A}} \cdot \vec{\mathbf{C}})\vec{\mathbf{B}} - (\vec{\mathbf{A}} \cdot \vec{\mathbf{B}})\vec{\mathbf{C}}$ $= 0 \cdot \vec{\mathbf{B}} - 0 \cdot \vec{\mathbf{C}} = \vec{\mathbf{0}}$ 319 (a) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix}$ Applying $C_{2} \rightarrow C_{2} +$

$$\begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1+x \end{vmatrix} = 1[1+x-x] = 1$$

Hence, $[\vec{a} \ \vec{b} \ \vec{c}]$ does not depend upon neither *x* nor *y*. 20 (b) The required vector is given by

 $\hat{n} = \frac{A\vec{B} \times A\vec{C}}{|A\vec{B} \times A\vec{C}|} = \frac{\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	C	А	В	А	А	C	С	D	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	В	А	D	D	А	C	А	С	А	В	

