CLASS : XIIth
SOLUTIONS
SUBJECT : MATHS DPP NO. :1

1
(d)

We have,
$|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$
Let θ be the angle between \vec{a} and \vec{b}
Now, $\vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}+\vec{b}|$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}=2|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow 49=9+25+2 \times 3 \times 5 \cos \theta$
$\Rightarrow 15=30 \cos \theta \Rightarrow \cos \theta=1 / 2 \Rightarrow \theta=\pi / 3$
2
(c)
$\therefore[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\overrightarrow{\mathbf{a}} \cdot\left(|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \sin \frac{2 \pi}{3} \hat{\mathbf{n}}\right)$
$=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}|\left(\sin \frac{2 \pi}{3}\right)$
$\left[\because \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{n}}=|\overrightarrow{\mathbf{a}}| \hat{\mathbf{n}}\left|\cos 0^{\circ}=|\overrightarrow{\mathbf{a}}|\right]\right.$
$=2 \times 3 \times 4 \times \frac{\sqrt{3}}{2}=12 \sqrt{3}$
3 (a)
Given that, $\overrightarrow{\mathbf{O A}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{O B}}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{O C}}=\hat{\mathbf{i}}+4 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{0 B}}-\overrightarrow{\mathbf{0 A}}$
$=(3-2) \hat{\mathbf{i}}+(-2-1) \hat{\mathbf{j}}+(1+1) \hat{\mathbf{k}}$
$=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$|\overrightarrow{\mathbf{A B}}|=\sqrt{1^{2}+(-3)^{2}+2^{2}}$
$=\sqrt{1+9+4}=\sqrt{14}$
$\overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{0 C}}-\overrightarrow{\mathbf{O B}}$
$=(1-3) \hat{\mathbf{i}}+(4+2) \hat{\mathbf{j}}+(-3-1) \hat{\mathbf{k}}$
$=-2 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
$|\overrightarrow{\mathbf{B C}}|=\sqrt{(-2)^{2}+6^{2}+(-4)^{2}}$
$=\sqrt{4+36+16}=\sqrt{56}$
$\overrightarrow{\mathbf{C A}}=\overrightarrow{\mathbf{0 A}}-\overrightarrow{\mathbf{0 C}}$
$=(2-1) \hat{\mathbf{i}}+(1-4) \hat{\mathbf{j}}+(-1+3) \hat{\mathbf{k}}$
$=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$|\overrightarrow{\mathbf{C A}}|=\sqrt{1^{2}+(-3)^{2}+(2)^{2}}$
$=\sqrt{1+9+4}=\sqrt{14}$
It is clear that two sides of a triangle are equal.
\therefore Points A, B, C from an isosceles triangle.
4
(b)

The component of \vec{a} along \vec{b} is given by
$\left\{\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}\right\}=\frac{18}{25}(3 \hat{j}+4 \hat{k})$
5
(a)

It is given that \vec{c} and \vec{d} are collinear vectors
$\therefore \vec{c}=\lambda \vec{d}$ for some scalar λ
$\Rightarrow(x-2) \vec{a}+\vec{b}=\lambda\{(2 x+1) \vec{a}-\vec{b}\}$
$\Rightarrow\{x-2-\lambda(2 x+1)\} \vec{a}+(\lambda+1) \vec{b}=\overrightarrow{0}$
$\Rightarrow \lambda+1=0$ and $x-2-\lambda(2 x+1)=0[\because \vec{a}, \vec{b}$ are non-collinear $]$
$\Rightarrow \lambda=-1$ and $x=\frac{1}{3}$
6
(a)

Equation of plane is $\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=d$,
where d is the perpendicular distance of the plane from origin
\therefore Required plane is $(\alpha x+\beta y+\gamma z)=p$
7
(c)

In $\triangle A B C, \overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}+\overrightarrow{\mathbf{A C}}$
$\Rightarrow \overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
$A D$ is parallel to $B C$ and $A D=2 B C$

$\therefore \overrightarrow{\mathbf{A D}}=2 \overrightarrow{\mathbf{b}}$
In $\triangle A C D, \overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{C D}}=\overrightarrow{\mathbf{A D}}$
$\Rightarrow \overrightarrow{\mathbf{C D}}=2 \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}$
Now, $\overrightarrow{\mathbf{C E}}=\overrightarrow{\mathbf{C D}}+\overrightarrow{\mathbf{D E}}=\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{a}}$
9
(d)

Let $\overrightarrow{\mathbf{R}}_{1}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{R}}_{2}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$

$\therefore \overrightarrow{\mathbf{R}}$ (along $\overrightarrow{\mathbf{A C}}$) $=\overrightarrow{\mathbf{R}}_{1}+\overrightarrow{\mathbf{R}}_{2}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}}$ (unit vector angle $\overrightarrow{\mathrm{AC}}$) $=\frac{\overrightarrow{\mathbf{R}}}{|\overrightarrow{\mathbf{R}}|}=\frac{3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{9+36+4}}$
$=\frac{1}{7}(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
11 (b)
Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors. Therefore, $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors
$\therefore x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0} \Rightarrow x=y=z=0$
12
(a)

Suppose point $\hat{i}+2 \hat{j}+3 \hat{k}$ divides the join of points $-2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $7 \hat{i}-\hat{k}$ in the ratio $\lambda: 1$. Then,
$\hat{i}+2 \hat{j}+3 \hat{k}=\frac{\lambda(7 \hat{i}-\hat{k})+(-2 \hat{i}+3 \hat{j}+5 \hat{k})}{\lambda+1}$
$\Rightarrow(\lambda+1) \hat{i}+2(\lambda+1) \hat{j}+3(\lambda+1) \hat{k}=(7 \lambda-2) \hat{i}+3 \hat{j}+(-\lambda+5) \hat{k}$
$\Rightarrow \lambda+1=7 \lambda-2,2(\lambda+1)=3$ and $3(\lambda+1)=-\lambda+5$
$\Rightarrow \lambda=\frac{1}{2}$
Hence, required ratio is $1: 2$
13
(d)

Clearly,
$\vec{a}-\vec{b}+\vec{b}-\vec{c}+\vec{c}-\vec{a}=\overrightarrow{0}$
$\therefore \vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are coplanar
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b} \cdot \vec{c}) \times(\vec{c}-\vec{a})\}=0$
314
(d)

Two given lines intersect, if
$7 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+13 \hat{\mathbf{k}}+s(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
$=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}+t(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
$\Rightarrow(7+2 s) \hat{\mathbf{i}}+(10+3 s) \hat{\mathbf{j}}+(13+4 s) \hat{\mathbf{k}}$
$=(3+t) \hat{\mathbf{i}}+(5+2 t) \hat{\mathbf{j}}+(7+3 t) \hat{\mathbf{k}}$
$\Rightarrow 7+2 s=3+t$
$\Rightarrow 2 s-t=-4$
$10+3 s=5+2 t$
$\Rightarrow 3 s-2 t=-5$...(ii)
and $13+4 \mathrm{~s}=7+3 \mathrm{t}$
$\Rightarrow 4 s-3 t=-6 \ldots$ (iii)
On solving Eqs. (i) and (iii), we get
$s=-3, t=-2$
\therefore Required line is
$7 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+13 \hat{\mathbf{k}}+(-3)[2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}]$
$\Rightarrow \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is the required line.
16
(c)

Given that, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$
Let $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$, then
$\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}} \Rightarrow(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
Now, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}}=(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}})-(2 \hat{\mathbf{i}}-\hat{\mathbf{k}})$
$=(x-2) \hat{\mathbf{i}}+y \hat{\mathbf{j}}+(z+1) \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{a}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{y}{2} & y & z+1 \\ 1 & 1 & 0\end{array}\right|=\overrightarrow{\mathbf{0}}$
$\Rightarrow-(z+1) \hat{\mathbf{i}}+(z+1) \hat{\mathbf{j}}+(x-2-y) \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$
On equating the coefficient of \hat{i}, \hat{j} and $\hat{\mathrm{k}}$, we get
$z=-1, x-y=2$
Now, $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \Rightarrow(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$
And $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}=(x-1) \hat{\mathbf{i}}+(y-1) \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\hat{\mathbf{i}}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & y \frac{1}{z} & -1\end{array}\right|=\overrightarrow{\mathbf{0}}$
$\Rightarrow(-y+1) \hat{\mathbf{i}}-\hat{\mathbf{j}}(-x+1-2 z)+(-2 y+2) \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow y=1, x+2 z=1$
From Eqs. (i) and (ii), we get
$x=3, y=1 z=-1$
$\therefore \overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
17

> (a)

Given, $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{B}} \times(\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}) \ldots(i)$
Also, $[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}] \neq 0 i e . \overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$ are not coplanar.
\therefore From Eq. (i)
$(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}})-(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}) \overrightarrow{\mathbf{C}}=(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}}) \overrightarrow{\mathbf{C}}-(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{A}}$
$\Rightarrow(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{A}}+(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{B}}-[(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}})+(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}})] \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{0}}$

$$
[\because[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}] \neq 0]
$$

Now, consider

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{B}}-(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}) \overrightarrow{\mathbf{C}} \\
& =0 \cdot \overrightarrow{\mathbf{B}}-0 \cdot \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

319
(a)
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\left|\begin{array}{ccc}1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}+C_{1}$
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1+x\end{array}\right|=1[1+x-x]=1$

Hence, $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ does not depend upon neither x nor y.
20
(b)

The required vector is given by
$\hat{n}=\frac{A \vec{B} \times A \vec{C}}{|A \vec{B} \times A \vec{C}|}=\frac{\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | C | A | B | A | A | C | C | D | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | A | D | D | A | C | A | C | A | B |
| | | | | | | | | | | |

