

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 6

Topic :- RELATIONS AND FUNCTIONS

- 1. If $2f(x^2) + 3f(\frac{1}{x^2}) = x^2 1$ for all $x \in R \{0\}$, then $f(x^4)$ is a) $\frac{(1 - x^4)(2x^4 + 3)}{5x^4}$ b) $\frac{(1 + x^4)(2x^4 - 3)}{5x^4}$ c) $\frac{(1 - x^4)(2x^4 - 3)}{5x^4}$ d) None of these
- 2. The domain of definition of the function $f(x) = {}^{7-x}P_{x-3}$, is a) [3, 7] b) {3, 4, 5, 6, 7} c) {3, 4, 5} d) None of these

3. Let f(x) = x and g(x) = |x| for all $x \in R$. Then, the function $\phi(x)$ satisfying $\{\phi(x) - f(x)\}^2 + \{\phi(x) - g(x)\}^2 = 0$, is

a) $\phi(x) = x, x \in [0, \infty)$ b) $\phi(x) = x, x \in R$ c) $\phi(x) = -x, x \in (-\infty, 0]$ d) $\phi(x) = x + |x|, x \in R$

4. The value of the function $f(x) = 3\sin\left(\sqrt{\frac{\pi^2}{16}} - x^2\right)$ lies in the interval a) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ b) $\left[0, \frac{3}{\sqrt{2}}\right]$ c) $\left(-3, 3\right)$ d) None of these

- 5. The period of the function $f(x) = |\sin x| + |\cos x|$ is a) π b) $\pi/2$ c) 2π d) None of these
- 6. If $f(x) = (ax^2 + b)^3$, then the function g such that f(g(x)) = g(f(x)) is given by a) $g(x) = \left(\frac{b - x^{1/3}}{a}\right)^{1/2}$ b) $g(x) = \frac{1}{(ax^2 + b)^3}$ c) $g(x) = (ax^2 + b)^{1/3}$ d) $g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$

7. Let *R* be the real line. Consider the following subsets of the plane *R* × *R*S = {(x, y):y = x + 1 and o < x < 2}
T = {(x, y):x - y is an integer}
Which of the following is true?

a) *T* is an equivalent relation on *R* but *S* is not
b) Neither *S* nor *T* is an equivalence relation on

c) Both *S* and *T* are equivalence relations on *R* d) *S* is an equivalence relations on *R* and *T* is not

8. Let A = [-1, 1] and $f:A \rightarrow A$ be defined as f(x) = x|x| for all $x \in A$, then f(x) is a) Many-one into function b) One-one into function

c) Many-one onto function

9. If
$$f(x) = \frac{1-x}{1+x}, x \neq 0, -1$$
 and $\alpha = f(f(x)) + f(f(\frac{1}{x}))$, then
a) $\alpha > 2$ b) $\alpha < -2$ c) $|\alpha| > 2$ d) $\alpha = 2$

10. Let *R* and *S* be two non-void relations on a set*A*. Which of the following statements is false? a) *R* and *S* are transitive implies $R \cap S$ is transitive.

b) *R* and *S* are transitive implies $R \cup S$ is transitive.

c) *R* and *S* are symmetric implies $R \cup S$ is symmetric.

d) *R* and *S* are reflexive implies $R \cap S$ is reflexive.

11. *A* = {1, 2, 3, 4}, *B*{1, 2, 3, 4, 5, 6}are two sets, and function *f*:*A*→*B* is defined by *f*(*x*) = $x + 2 \forall x \in A$, then the function *f* is

12. Let f(x) = x + 1 and $\phi(x) = x - 2$. Then the values of x satisfying $|f(x) + \phi(x)| = |f(x)| + |\phi(x)|$ are :

a) $(-\infty, 1]$ b) $[2,\infty)$ c) $(-\infty, -2]$ d) $[1,\infty)$

13. The domain of the function
$$f(x) = \frac{\sin^{-1}(3-x)}{\log_e(|x|-2)}$$
, is
a) [2, 4] b) (2, 3) \cup (3, 4] c) [2, 3) d) $(-\infty, -3) \cup$ [2, ∞)
14. If $f(x) = \frac{1}{\sqrt{|x|-x}}$ then, domain of $f(x)$ is
a) $(-\infty, 0)$ b) $(-\infty, 2)$ c) $(-\infty, \infty)$ d) None of the above
15. The domain of definition of
 $f(x) = \log_{10}\{(\log_{10} x)^2 - 5 \log_{10} x + 6\}$, is
a) $(0, 10^2)$ b) $(10^3, \infty)$ c) $(10^2, 10^3)$ d) $(0, 10^2) \cup (10^3, \infty)$

16. If a function f(x) satisfies the condition $f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq 0$, then f(x) equals a) $x^2 - 2$ for all $x \neq 0$ b) $x^2 - 2$ for all x satisfying $|x| \ge 2$ c) $x^2 - 2$ for all x satisfying |x| < 2d) None of these

17. The period of the function
$$f(x) = \sin\left(\frac{2x+3}{6\pi}\right)$$
, is
a) 2π b) 6π c) $6\pi^2$ d) None of these

18. *f*:*R*→*R* is a function defined by
$$f(x) = 10 x - 7$$
. If $g = f^{-1}$, then $g(x) = a$
a) $\frac{1}{10 x - 7}$ b) $\frac{1}{10 x + 7}$ c) $\frac{x + 7}{10}$ d) $\frac{x - 7}{10}$

19. If f(x) = [x - 2], where [x] denotes the greatest integer less than or equal to x, then f(2, 5) is equal to

a)
$$\frac{1}{2}$$
 b) 0 c) 1 d) Does not exist

20. The domain of definition of $f(x) = \sqrt{\log_{10}(\log_{10} x) - \log_{10}(4 - \log_{10} x) - \log_{10} 3}, \text{ is}$ a) (10³, 10⁴) b) [10³, 10⁴] c) [10³, 10⁴) d) (10³, 10⁴]