CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 6

Topic :- RELATIONS AND FUNCTIONS

1. If $2 f\left(x^{2}\right)+3 f\left(\frac{1}{x^{2}}\right)=x^{2}-1$ for all $x \in R-\{0\}$, then $f\left(x^{4}\right)$ is
a) $\frac{\left(1-x^{4}\right)\left(2 x^{4}+3\right)}{5 x^{4}}$
b) $\frac{\left(1+x^{4}\right)\left(2 x^{4}-3\right)}{5 x^{4}}$
c) $\frac{\left(1-x^{4}\right)\left(2 x^{4}-3\right)}{5 x^{4}}$
d) None of these
2. The domain of definition of the function $f(x)={ }^{7-x} P_{x-3}$, is
a) $[3,7]$
b) $\{3,4,5,6,7\}$
c) $\{3,4,5\}$
d) None of these
3. Let $f(x)=x$ and $g(x)=|x|$ for all $x \in R$. Then, the function $\phi(x)$ satisfying $\{\phi(x)-f(x)\}^{2}+$ $\{\phi(x)-\mathrm{g}(x)\}^{2}=0$, is
a) $\phi(x)=x, x \in[0, \infty)$
b) $\phi(x)=x, x \in R$
c) $\phi(x)=-x, x \in(-\infty, 0]$
d) $\phi(x)=x+|x|, x \in R$
4. The value of the function $f(x)=3 \sin \left(\sqrt{\frac{\pi^{2}}{16}-x^{2}}\right)$ lies in the interval
a) $[-\pi / 4, \pi / 4]$
b) $[0,3 / \sqrt{2}]$
c) $(-3,3)$
d) None of these
5. The period of the function $f(x)=|\sin x|+|\cos x|$ is
a) π
b) $\pi / 2$
c) 2π
d) None of these
6. If $f(x)=\left(a x^{2}+b\right)^{3}$, then the function g such that $f(g(x))=g(f(x))$ is given by
a) $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)^{1 / 2}$
b) $g(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
c) $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
d) $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$
7. Let R be the real line. Consider the following subsets of the plane $R \times R$
$S=\{(x, y): y=x+1$ and $o<x<2\}$
$T=\{(x, y): x-y$ is an integer $\}$
Which of the following is true?
a) T is an equivalent relation on R but S is not b) Neither S nor T is an equivalence relation on
c) Both S and T are equivalence relations on R
d) S is an equivalence relations on R and T is not
8. Let $A=[-1,1]$ and $f: A \rightarrow A$ be defined as $f(x)=x|x|$ for all $x \in A$, then $f(x)$ is
a) Many-one into function
b) One-one into function
c) Many-one onto function
d) One-one onto function
9. If $f(x)=\frac{1-x}{1+x}, x \neq 0,-1$ and $\alpha=f(f(x))+f\left(f\left(\frac{1}{x}\right)\right)$, then
a) $\alpha>2$
b) $\alpha<-2$
c) $|\alpha|>2$
d) $\alpha=2$
10. Let R and S be two non-void relations on a set A. Which of the following statements is false?
a) R and S are transitive implies $R \cap S$ is transitive.
b) R and S are transitive implies $R \cup S$ is transitive.
c) R and S are symmetric implies $R \cup S$ is symmetric.
d) R and S are reflexive implies $R \cap S$ is reflexive.
11. $A=\{1,2,3,4\}, B\{1,2,3,4,5,6\}$ are two sets, and function $f: A \rightarrow B$ is defined by $f(x)$ $=x+2 \forall x \in A$, then the function f is
a) Bijective
b) Onto
c) One-one
d) Many-one
12. Let $f(x)=x+1$ and $\phi(x)=x-2$. Then the values of x satisfying $|f(x)+\phi(x)|=|f(x)|+$ $|\phi(x)|$ are :
a) $(-\infty, 1]$
b) $[2, \infty)$
c) $(-\infty,-2]$
d) $[1, \infty)$
13. The domain of the function $f(x)=\frac{\sin ^{-1}(3-x)}{\log _{e}(|x|-2)}$, is
a) $[2,4]$
b) $(2,3) \cup(3,4]$
c) $[2,3)$
d) $(-\infty,-3) \cup[2, \infty)$
14. If $f(x)=\frac{1}{\sqrt{|x|-x}}$ then, domain of $f(x)$ is
a) $(-\infty, 0)$
b) $(-\infty, 2)$
c) $(-\infty, \infty)$
d) None of the above
15. The domain of definition of
$f(x)=\log _{10}\left\{\left(\log _{10} x\right)^{2}-5 \log _{10} x+6\right\}$, is
a) $\left(0,10^{2}\right)$
b) $\left(10^{3}, \infty\right)$
c) $\left(10^{2}, 10^{3}\right)$
d) $\left(0,10^{2}\right) \cup\left(10^{3}, \infty\right)$
16. If a function $f(x)$ satisfies the condition
$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq 0$, then $f(x)$ equals
a) $x^{2}-2$ for all $x \neq 0$
b) $x^{2}-2$ for all x satisfying $|x| \geq 2$
c) $x^{2}-2$ for all x satisfying $|x|<2$
d) None of these
17. The period of the function $f(x)=\sin \left(\frac{2 x+3}{6 \pi}\right)$, is
a) 2π
b) 6π
c) $6 \pi^{2}$
d) None of these
18. $f: R \rightarrow R$ is a function defined by $f(x)=10 x-7$. If $g=f^{-1}$, then $g(x)=$
a) $\frac{1}{10 x-7}$
b) $\frac{1}{10 x+7}$
c) $\frac{x+7}{10}$
d) $\frac{x-7}{10}$
19. If $f(x)=[x-2]$, where $[x]$ denotes the greatest integer less than or equal to x, then $f(2,5)$ is equal to
a) $\frac{1}{2}$
b) 0
c) 1
d) Does not exist
20. The domain of definition of
$f(x)=\sqrt{\log _{10}\left(\log _{10} x\right)-\log _{10}\left(4-\log _{10} x\right)-\log _{10} 3}$, is
a) $\left(10^{3}, 10^{4}\right)$
b) $\left[10^{3}, 10^{4}\right]$
c) $\left[10^{3}, 10^{4}\right)$
d) $\left(10^{3}, 10^{4}\right]$

