

CLASS: XIIth DATE:

SUBJECT: MATHS DPP NO.: 5

1. Let $f: N \to Y$ be a function defined as f(x) = 4x + 3 where $Y = \{y \in N: y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible and its inverse is

a)
$$g(y) = \frac{y-3}{4}$$

b)
$$g(y) = \frac{3y+4}{3}$$

b)
$$g(y) = \frac{3y+4}{3}$$
 c) $g(y) = 4 + \frac{y+3}{4}$ d) $g(y) = \frac{y+3}{4}$

$$d)g(y) = \frac{y+3}{4}$$

- 2. If $f(x) = \sqrt{\cos(\sin x)} + \sqrt{\sin(\cos x)}$, then range of f(x) is b) $[\sqrt{\cos 1}, 1 + \sqrt{\sin 1}]$ c) $[1 - \sqrt{\cos 1}, \sqrt{\sin 1}]$ d) None of these a) $[\sqrt{\cos 1}, \sqrt{\sin 1}]$
- 3. Let $f:A \rightarrow B$ and $g:B \rightarrow C$ be two functions such that $g \circ f:A \rightarrow C$ is onto and g is one-one. Then,
 - a) f is one-one
 - b) *f* is onto
 - c) f is both one-one and onto
 - d) None of these
- 4. Let $f:(e,\infty)\to R$ be defined by $f(x) = \log[\log(\log x)]$, then
 - a) f is one-one but not onto
 - b) *f* is onto but not one-one
 - c) *f* is both one-one and onto
 - d) *f* is neither one-one nor onto
- 5. If $f:[-6, 6] \to R$ is defined by $f(x) = x^2 3$ for $x \in R$, then $(f \circ f \circ f)(-1) + (f \circ f \circ f)(0) + 1$ (fofof)(1) is equal to

a)
$$f(4\sqrt{2})$$

b)
$$f(3\sqrt{2})$$

c)
$$f(2\sqrt{2})$$

d)
$$f(\sqrt{2})$$

- 6. Let $f: R = \{n\} \rightarrow R$ be a function defined by $f(x) = \frac{x-m}{x-n}$, where $m \neq n$. Then,
 - a) *f* is one-one onto
- b) *f* is one-one into
- c) f is many one onto d) f is may one into
- 7. Let f(x) = x, g(x) = 1/x and h(x) = f(x)g(x). Then, h(x) = 1, if
 - a) x is any rational number
 - b) x is a non-zero real number
 - c) x is a real number
 - d) x is a rational number
- 8. Which of the following is not periodic?

a)
$$|\sin 3x| + \sin^2 x$$
 b) $\cos \sqrt{x} + \cos^2 x$ c) $\cos 4x + \tan^2 x$ d) $\cos 2x + \sin x$

b)
$$\cos \sqrt{x} + \cos^2 x$$

c)
$$\cos 4x + \tan^2 x$$

d)
$$\cos 2x + \sin x$$

- 9. If $f(x) = 2^x$, then f(0), f(1), f(2), ... are in
 - a) AP

b) GP

c) HP

- d) Arbitrary
- 10. If $f(\sin x) f(-\sin x) = x^2 1$ is defined for all $x \in R$, then the value of $x^2 2$ can be

- 11. If $x \in R$, then $f(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is equal to
 - a) $2\tan^{-1}x$
 - b) $\begin{cases} 2 \tan^{-1} x, x \ge 0 \\ -2 \tan^{-1} x, x \le 0 \end{cases}$
 - c) $\begin{cases} \pi + 2 \tan^{-1} x, & x \ge 0 \\ -\pi + 2 \tan^{-1} x, & x \le 0 \end{cases}$
 - d) None of these
- 12. Domain of the function $f(x) = \sin^{-1}(\log_2 x)$ in the set of real numbers is
 - a) $\{x: 1 \le x \le 2\}$
- b) $\{x:1 \le x \le 3\}$ c) $\{x:-1 \le x \le 2\}$ d) $\{x:\frac{1}{2} \le x \le 2\}$
- If $f: R \to R$ and $g: R \to R$ are given by f(x) = |x| and g(x) = [x] for each $x \in R$, then $\{x \in R : g(f(x)) \le f(g(x))\} =$
 - a) $Z \cup (-\infty,0)$
- b) $(-\infty,0)$
- c) Z

d)R

- If $f(x) = \log(\frac{1+x}{1-x})$, -1 < x < 1, then
- $f\left(\frac{3x+x^3}{1+3x^2}\right) f\left(\frac{2x}{1+x^2}\right)$ is
 - a) $[f(x)]^3$
- b) $[f(x)]^2$
- c) -f(x)
- d) f(x)

- The domain of definition of
- $f(x) = \log_{10} \log_{10} \log_{10} ... \log_{10} x$, is
 - a) $(10^n, \infty)$
- b) $(10^{n-1}, \infty)$
- c) $(10^{n-2}, \infty)$
- d) None of these

- 16. The domain of $\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ is
 - a) [1, 9]
- b) [-1, 9]
- c) [-9, 1]
- d)[-9, -1]
- 17. Domain of definition of the function $f(x) = \frac{3}{4 x^2} + \log_{10}(x^3 x)$, is
 - a) (1, 2)

b) $(-1, 0) \cup (1, 2)$

c) $(1, 2) \cup (2, \infty)$

- d) $(-1, 0) \cup (1, 2) \cup (2, \infty)$
- If *X* and *Y* are two non-empty sets where $f:X\to Y$ is function is defined such that $f(C) = \{f(x) : x \in C\}$ for $C \subseteq X$

And $f^{-1}(D) = \{x: f(x) \in D\} for D \subseteq Y$,

For any $A \subseteq X$ and $B \subseteq Y$, then

a) $f^{-1}(f(A)) = A$

- b) $f^{-1}(f(A)) = A$ only if f(X) = Y
- c) $f(f^{-1}(B)) = B$ only if $B \subseteq f(x)$
- d) $f(f^{-1}(B)) = B$

19. If f(-x) = -f(x), then f(x) is

a) An even function

b) An odd function

c) Neither odd nor evend) Periodic function

20. If
$$f:[-2,2] \rightarrow R$$
 is defined by
$$f(x) = \begin{cases} -1, & \text{for } -2 \le x \le 0 \\ x - 1, & \text{for } 0 \le x \le 2 \end{cases}$$

Then $\{x \in [-2,2]: x \le 0 \text{ and } f(|x|) = x\} =$

a)
$$\{-1\}$$
 b) $\{0\}$

c)
$$\{-1/2\}$$

