CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- RELATIONS AND FUNCTIONS

1. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$ where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is
a) $g(y)=\frac{y-3}{4}$
b) $g(y)=\frac{3 y+4}{3}$
c) $g(y)=4+\frac{y+3}{4}$
d) $g(y)=\frac{y+3}{4}$
2. If $f(x)=\sqrt{\cos (\sin x)}+\sqrt{\sin (\cos x)}$, then range of $f(x)$ is
a) $[\sqrt{\cos 1}, \sqrt{\sin 1}]$
b) $[\sqrt{\cos 1}, 1+\sqrt{\sin 1}]$
c) $[1-\sqrt{\cos 1}, \sqrt{\sin 1}]$
d) None of these
3. Let $f: A \rightarrow B$ and $\mathrm{g}: B \rightarrow C$ be two functions such that gof:A $\rightarrow C$ is onto and g is one-one. Then,
a) f is one-one
b) f is onto
c) f is both one-one and onto
d) None of these
4. Let $f:(e, \infty) \rightarrow R$ be defined by $f(x)=\log [\log (\log x)]$, then
a) f is one-one but not onto
b) f is onto but not one-one
c) f is both one-one and onto
d) f is neither one-one nor onto
5. If $f:[-6,6] \rightarrow R$ is defined by $f(x)=x^{2}-3$ for $x \in R$, then $(f o f o f)(-1)+(f o f \circ f)(0)+$ (fofof)(1) is equal to
a) $f(4 \sqrt{2})$
b) $f(3 \sqrt{2})$
c) $f(2 \sqrt{2})$
d) $f(\sqrt{2})$
6. Let $f: R=\{n\} \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then,
a) f is one-one onto
b) f is one-one into
c) f is many one onto
d) f is may one into
7. Let $f(x)=x, g(x)=1 / x$ and $h(x)=f(x) g(x)$. Then, $h(x)=1$, if
a) x is any rational number
b) x is a non-zero real number
c) x is a real number
d) x is a rational number
8. Which of the following is not periodic?
a) $|\sin 3 x|+\sin ^{2} x$
b) $\cos \sqrt{x}+\cos ^{2} x$
c) $\cos 4 x+\tan ^{2} x$
d) $\cos 2 x+\sin x$
9. If $f(x)=2^{x}$, then $f(0), f(1), f(2), \ldots$ are in
a) AP
b) GP
c) HP
d) Arbitrary
10. If $f(\sin x)-f(-\sin x)=x^{2}-1$ is defined for all $x \in R$, then the value of $x^{2}-2$ can be
a) 0
b) 1
c) 2
d) -1
11. If $x \in R$, then $f(x)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is equal to
a) $2 \tan ^{-1} x$
b) $\left\{\begin{array}{c}2 \tan ^{-1} x, x \geq 0 \\ -2 \tan ^{-1} x, \quad x \leq 0\end{array}\right.$
c) $\left\{\begin{array}{c}\pi+2 \tan ^{-1} x, \quad x \geq 0 \\ -\pi+2 \tan ^{-1} x, \quad x \leq 0\end{array}\right.$
d) None of these
12. Domain of the function $f(x)=\sin ^{-1}\left(\log _{2} x\right)$ in the set of real numbers is
a) $\{x: 1 \leq x \leq 2\}$
b) $\{x: 1 \leq x \leq 3\}$
c) $\{x:-1 \leq x \leq 2\}$
d) $\left\{x: \frac{1}{2} \leq x \leq 2\right\}$
13. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=[x]$ for each $x \in R$, then $\{x \in R: g(f(x)) \leq f(g(x))\}=$
a) $Z \cup(-\infty, 0)$
b) $(-\infty, 0)$
c) Z
d) R
14. If $f(x)=\log \left(\frac{1+x}{1-x}\right),-1<x<1$, then $f\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)-f\left(\frac{2 x}{1+x^{2}}\right)$ is
a) $[f(x)]^{3}$
b) $[f(x)]^{2}$
c) $-f(x)$
d) $f(x)$
15. The domain of definition of $f(x)=\underset{\rightarrow \text { n times }}{\leftarrow} \log _{10} \log _{10} \log _{10} \ldots \log _{10} x$, is
a) $\left(10^{n}, \infty\right)$
b) $\left(10^{n-1}, \infty\right)$
c) $\left(10^{n-2}, \infty\right)$
d) None of these
16. The domain of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$ is
a) $[1,9]$
b) $[-1,9]$
c) $[-9,1]$
d) $[-9,-1]$
17. Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is
a) $(1,2)$
b) $(-1,0) \cup(1,2)$
c) $(1,2) \cup(2, \infty)$
d) $(-1,0) \cup(1,2) \cup(2, \infty)$
18. If X and Y are two non-empty sets where $f: X \rightarrow Y$ is function is defined such that $f(C)=\{f(x): x \in C\}$ for $C \subseteq X$ And $f^{-1}(D)=\{x: f(x) \in D\}$ for $D \subseteq Y$,
For any $A \subseteq X$ and $B \subseteq Y$, then
a) $f^{-1}(f(A))=A$
b) $f^{-1}(f(A))=A$ only if $f(X)=Y$
c) $f\left(f^{-1}(B)\right)=B$ only if $B \subseteq f(x)$
d) $f\left(f^{-1}(B)\right)=B$
19. If $f(-x)=-f(x)$, then $f(x)$ is
a) An even function
b) An odd function
c) Neither odd nor even d) Periodic function
20. If $f:[-2,2] \rightarrow R$ is defined by
$f(x)=\left\{\begin{array}{l}-1, \text { for }-2 \leq x \leq 0 \\ x-1, \text { for } 0 \leq x \leq 2\end{array}\right.$
Then $\{x \in[-2,2]: x \leq 0$ and $f(|x|)=x\}=$
a) $\{-1\}$
b) $\{0\}$
c) $\{-1 / 2\}$
d) ϕ

