CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 10

Topic :- RELATIONS AND FUNCTIONS

1. Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1} \frac{2 x}{1-x^{2}}$, then f is both one-one and onto when B is the interval
a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
c) $\left[0, \frac{\pi}{2}\right)$
d) $\left(0, \frac{\pi}{2}\right)$
2. If $f: R \rightarrow R$ defined by $f(x)=x^{3}$, then $f^{-1}(8)$ is equal to
a) $\{2\}$
b) $\left\{2, \omega, 2 \omega^{2}\right\}$
c) $\{2,-2\}$
d) $\{2,2\}$
3. The set of all x for which there are no functions
$f(x)=\log _{(x-2) /(x+3)} 2$ and $g(x)=\frac{1}{\sqrt{x^{2}-9}}$, is
a) $[-3,2]$
b) $[-3,2)$
c) $(-3,2]$
d) $(-3,-2)$
4. Which of the following functions is (are) not an injective map(s)?
a) $f(x)=|x+1|, x \in[-1, \infty)$
b) $\mathrm{g}(x)=x+\frac{1}{x^{\prime}} x \in(0, \infty)$
c) $h(x)=x^{2}+4 x-5, x \in(0, \infty)$
d) $k(x)=e^{-x}, x \in[0, \infty)$
5. If $f: N \rightarrow Z$ is defined by
$f(n)=\left\{\begin{array}{c}2 \text { if } n=3 k, k \in Z \\ 10 \text { if } n=3 k+1, k \in Z, \\ 0 \text { if } n=3 k+2, k \in Z\end{array}\right.$
Then $\{n \in N: f(n)>2\}$ is equal to
a) $\{3,6,4\}$
b) $\{1,4,7\}$
c) $\{4,7\}$
d) $\{7\}$
6. If $f(x)=\frac{2 x-1}{x+5}(x \neq-5)$, then $f^{-1}(x)$ is equal to
a) $\frac{x+5}{2 x-1}, x \neq \frac{1}{2}$
b) $\frac{5 x+1}{2-x}, x \neq 2$
c) $\frac{x-5}{2 x+1}, x \neq \frac{1}{2}$
d) $\frac{5 x-1}{2-x}, x \neq 2$
7. If a, b are two fixed positive integers such that $f(a+x)=b+\left[b^{3}+1-3 b^{2} f(x)+3 b\{f(x)\}^{2}-\{f(x)\}^{3}\right]^{1 / 3}$
For all $x \in R$, then $f(x)$ is a periodic function with period
a) a
b) $2 a$
c) b
d) $2 b$
8. Let A be a set containing 10 distinct elements, then the total number of distinct function from A to A is
a) 10^{10}
b) 101
c) 2^{10}
d) $2^{10}-1$
9. If Q denotes the set of all rational numbers and $f\left(\frac{p}{q}\right)=\sqrt{p^{2}-q^{2}}$ for any $\frac{p}{q} \in \mathcal{Q}$, then observe the following statements.
I. $f\left(\frac{p}{q}\right)$ is real for each $\frac{p}{q} \in Q$.
II. $f\left(\frac{p}{q}\right)$ is a complex number for each $\frac{p}{q} \in \mathcal{Q}$.

Which of the following is correct?
a) Both I and II are true
b) I is true, II is false
c) I is false, II is true
d) Both I and II are false
10. The domain of the function $f(x)=\log _{3+x}\left(x^{2}-1\right)$ is
a) $(-3,-1) \cup(1, \infty)$
b) $[-3,-1] \cup[1, \infty]$
c) $(-3,-2) \cup(-2,-1) \cup(1, \infty)$
d) $[-3,-2) \cup(-2,-1) \cup(1, \infty)$
11. Let $A=R-\{3\}, B=R-\{1\}$. Let $f: A \rightarrow B$ be defined by $f(x)=\frac{x-2}{x-3}$.Then,
a) f is bijective
b) f is one-one but not onto
c) f is onto but not one-one
d) None of the above
12. Let $f(x)=\frac{\sqrt{\sin x}}{1+\sqrt[3]{\sin x}}$. If D is the domain of f, then D contains
a) $(0, \pi)$
b) $(-2 \pi,-\pi)$
c) $(3 \pi, 4 \pi)$
d) $(4 \pi, 6 \pi)$
13. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be given by $f(x)=3 x^{2}+2$ and $g(x)=3 x-1$ for all $x \in R$. Then,
a) $f o g(x)=27 x^{2}-18 x+5$
b) $f \circ g(x)=27 x^{2}+18 x-5$
c) $g \circ f(x)=9 x^{2}-5$
d) $g \circ f(x)=9 x^{2}+15$
14. The domain of definition of the function
$f(x)=\frac{1}{\sqrt{|x|-x}}$, is
a) R
b) $(0, \infty)$
c) $(-\infty, 0)$
d) None of these
15. Let $f: A \rightarrow B$ and $\mathrm{g}: B \rightarrow A$ be two functions such that $f o \mathrm{~g}=I_{B}$. Then,
a) f and g both are injections
b) f and g both are surjections
c) f is an injection and g is a surjection
d) f is a surjection and g is an injection
16. If $f(x)=x^{2}-1$ and $g(x)=(x+1)^{2}$, then $(g \circ f)(x)$ is
a) $(x+1)^{4}-1$
b) $x^{4}-1$
c) x^{4}
d) $(x+1)^{4}$
17. If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$, for all $x, y \in R$ and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
a) $\frac{7 n}{2}$
b) $\frac{7(n+1)}{2}$
c) $7 n(n+1)$
d) $\frac{7 n(n+1)}{2}$
18. If $f(x)=2 x^{4}-13 x^{2}+a x+b$ is divisible by $x^{2}-3 x+2$, then (a, b) is equal to
a) $(-9,-2)$
b) $(6,4)$
c) $(9,2)$
d) $(2,9)$
19. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x^{2}-8}{x^{2}+2}$ Then, f is
a) One-one but not onto
b) One-one and onto
c) Onto but not one-one
d) Neither one-one nor onto
20. The domain of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$, is
a) $[1,2)$
b) $[2,3)$
c) $[1,2]$
d) $[2,3]$

