

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 10

Topic :- RELATIONS AND FUNCTIONS

1. Let $f:(-1, 1) \rightarrow B$, be a function defined by $f(x) = \tan^{-1} \frac{2x}{1-x^{2}}$, then f is both one-one and onto when B is the interval

a)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ c) $\left[0, \frac{\pi}{2}\right)$ d) $\left(0, \frac{\pi}{2}\right)$

2. If
$$f:R \to R$$
 defined by $f(x) = x^3$, then $f^{-1}(8)$ is equal to
a) {2} b) {2, ω , $2\omega^2$ } c) {2, -2} d) {2, 2}

3. The set of all *x* for which there are no functions

$$f(x) = \log_{(x-2)/(x+3)} 2 \text{ and } g(x) = \frac{1}{\sqrt{x^2 - 9}}, \text{ is}$$

a) $[-3, 2]$ b) $[-3, 2)$ c) $(-3, 2]$ d) $(-3, -2)$

4. Which of the following functions is (are) not an injective map(s)? a) $f(x) = |x + 1|, x \in [-1, \infty)$ b) $g(x) = x + \frac{1}{x}, x \in (0, \infty)$ c) $h(x) = x^2 + 4x - 5, x \in (0, \infty)$ d) $k(x) = e^{-x}, x \in [0, \infty)$

5. If
$$f:N \to Z$$
 is defined by

$$f(n) = \begin{cases} 2 & \text{if } n = 3k, k \in Z \\ 10 & \text{if } n = 3k + 1, k \in Z, \\ 0 & \text{if } n = 3k + 2, k \in Z \end{cases}$$

Then
$$\{n \in N: f(n) > 2\}$$
 is equal toa) $\{3, 6, 4\}$ b) $\{1, 4, 7\}$ c) $\{4, 7\}$ d) $\{7\}$

6. If
$$f(x) = \frac{2x-1}{x+5}(x \neq -5)$$
, then $f^{-1}(x)$ is equal to
a) $\frac{x+5}{2x-1}, x \neq \frac{1}{2}$ b) $\frac{5x+1}{2-x}, x \neq 2$ c) $\frac{x-5}{2x+1}, x \neq \frac{1}{2}$ d) $\frac{5x-1}{2-x}, x \neq 2$

7. If *a*,*b* are two fixed positive integers such that

$$f(a + x) = b + [b^3 + 1 - 3b^2f(x) + 3b \{f(x)\}^2 - \{f(x)\}^3]^{1/3}$$
For all $x \in R$, then $f(x)$ is a periodic function with period
a) *a* b) 2*a* c) *b* d) 2*b*

8. Let <i>A</i> be a set contained <i>A</i> to <i>A</i> is	ontaining 10 distinct eleme	ents, then the total numb	per of distinct function from	
a) 10 ¹⁰	b)101	c) 2 ¹⁰	d) $2^{10} - 1$	
9. If <i>Q</i> denotes	the set of all rational numb	pers and $f\left(\frac{p}{q}\right) = \sqrt{p^2 - q^2}$	$\overline{2}$ for any $\frac{p}{q} \in Q$, then observe	
the following statem	ients.			
I. $f\left(\frac{p}{q}\right)$ is real for eac	$h \frac{p}{q} \in Q.$			
II. $f(\frac{p}{r})$ is a complex	number for each $\frac{p}{q} \in Q$.			
Which of the followi	ng is correct?			
a) Both Land II are true		h) Lis true II is fal	h) Lis true. ILis false	
c) Lis false. Il is true		d) Both I and II are	d) Both I and II are false	
•) • •• •••••, •• ••				
10. The domain of t	the function $f(x) = \log_{3+x}(x)$	$(x^2 - 1)$ is		
a) $(-3, -1) \cup (1, \infty)$		b) $[-3, -1] \cup [1, -3]$	b) $[-3, -1] \cup [1, \infty]$	
c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$		d) $[-3, -2] \cup (-3)$	d) $[-3, -2) \cup (-2, -1) \cup (1, \infty)$	
11 Let $A = R - \{3\}$	$B = R - \{1\}$ Let $f \cdot A \rightarrow B$ he	defined by $f(x) = \frac{x-2}{x-2}$	Then	
a) f is bijective		$\begin{array}{c} \text{unified by } f(x) \\ x-3 \end{array}$	b) f is one one but not ente	
a) f is bijective		d) None of the she	d) Norse of the above	
cj j is onto but	not one-one	d) None of the abo	ve	
12. Let $f(x) = \frac{\sqrt{\sin x}}{1 + \sqrt[3]{2}}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	then D contains		
a) (0, π)	b) $(-2 \pi, -\pi)$	c) (3 π,4 π)	d) (4 π,6 π)	
13 Let $f: R \to R$ and	$q: R \rightarrow R$ be given by $f(r) = 1$	$3r^2 + 2$ and $q(r) = 3r - 3r$	-1 for all $r \in R$ Then	
15. Let $f(x) = 27x^2 - 18x + 5$				
a) $f \circ g(x) = 27x^2 + 18x + 5$ b) $f \circ g(x) = 27x^2 + 18x - 5$				
c) $aof(x) = 9x^{2}$	$^{2}-5$			
d) $aof(x) = 9x$	$^{2}+15$			
$u_{j}y_{0j}(x) = jx$	115			
14. The domain	of definition of the function	n		
$f(x) = \frac{1}{\sqrt{ x - x}}$, is				
a) <i>R</i>	b) (0, ∞)	c) (− ∞,0)	d)None of these	
15. Let $f:A \rightarrow B$ and g a) f and g both f b) f and g both f c) f is an injecti d) f is a surjecti	g: $B \rightarrow A$ be two functions sub- are injections are surjections on and g is a surjection on and g is an injection	ch that $f \circ g = I_B$. Then,		
16. If $f(x) = x^2 - 1$	and $g(x) = (x + 1)^2$, then ((gof)(x) is		

17. If *f*:*R*→*R* satisfies
$$f(x + y) = f(x) + f(y)$$
, for all *x*, *y* ∈ *R* and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is
a) $\frac{7n}{2}$ b) $\frac{7(n+1)}{2}$ c) $7n(n+1)$ d) $\frac{7n(n+1)}{2}$

18. If
$$f(x) = 2x^4 - 13x^2 + ax + b$$
 is divisible by $x^2 - 3x + 2$, then (a, b) is equal to
a) $(-9, -2)$ b) $(6, 4)$ c) $(9, 2)$ d) $(2, 9)$

- 19. Let $f: R \to R$ be a function defined by $f(x) = \frac{x^2 8}{x^2 + 2}$ Then, f is a) One-one but not onto
 - b) One-one and onto
 - c) Onto but not one-one
 - d) Neither one-one nor onto

20. The domain of the function
$$f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$$
, is
a) [1, 2) b) [2, 3) c) [1, 2] d) [2, 3]

