

CLASS: XIIth DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.:8

Given,
$$f(x) = x^3 - 1$$

Let
$$x_1, x_2 \in R$$

Now,
$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^3 - 1 = x_2^3 - 1$$

$$\Rightarrow x_1^3 = x_2^3$$

$$\Rightarrow x_1 = x_2$$

f(x) is one-one. Also, it is onto as range of f = R

Hence, it is a bijection.

2 (d)

Given
$$f(x) = [x]$$
 and $g(x) = |x|$

Now,
$$f(g(\frac{8}{5})) = f(\frac{8}{5}) = [\frac{8}{5}] = 1$$

Now,
$$f(g(\frac{8}{5})) = f(\frac{8}{5}) = [\frac{8}{5}] = 1$$

And $g(f(-\frac{8}{5})) = g([-\frac{8}{5}]) = g(-2) = 2$

$$\therefore f\left(g\left(\frac{8}{5}\right)\right) - g\left(f\left(-\frac{8}{5}\right)\right) = 1 - 2 = -1$$

$$f(x) = \frac{\cos^{-1} x}{[x]}$$

For f(x) to be defined $-1 \le x \le 1$ and $[x] \ne 0 \Rightarrow x \notin [0, 1)$

 \therefore Domain of f(x) is $[-1, 0) \cup \{1\}$.

(c)

Let
$$f(x) = g(x) + h(x) + u(x)$$
, where

$$g(x) = \frac{1}{x}h(x) = 2^{\sin^{-1}x}$$
 and $u(x) = \frac{1}{\sqrt{x-2}}$

The domain of g(x) is the set of all real numbers other than zero i.e. $R - \{0\}$

The domain of h(x) is the set [-1, 1] and the domain of u(x) is the set of all reals greater than 2, i.e., $(2, \infty)$

Therefore, domain of $f(x) = R - \{0\} \cap [-1, 1] \cap (2, \infty) = \emptyset$

Given,
$$2f(x) + f(1-x) = x^2$$

Replacing x by (1 - x), we get

$$2f(1-x) + f(x) = (1-x)^2$$

$$\Rightarrow$$
 2 $f(1-x) + f(x) = 1 + x^2 - 2x$...(ii)

On multiplying Eq. (i) by 2 and subtracting from Eq. (ii), we get

$$3f(x) = x^2 + 2x - 1 \Rightarrow f(x) = \frac{x^2 - 2x - 1}{3}$$

6 **(d**)

f(x) = a + bx

$$f{f(x)} = a + b(a + bx) = a(1 + b)b^2x$$

$$\Rightarrow f[f\{f(x)\}] = f\{a(1+b) + b^2x\} = a(1+b+b^2) + b^3x$$

$$f^{r}(x) = a(1 + b + b^{2} + ... + b^{r-1}) + b^{r}x$$

$$= a \left(\frac{b^r - 1}{b - 1} \right) + b' x$$

7 **(b)**

We have,

$$f(x) = \frac{x-1}{x+1}$$

$$\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$$

$$\Rightarrow x = \frac{f(x) + 1}{1 - f(x)}$$

$$\therefore f(2 x) = \frac{2 x - 1}{2 x + 1} = \frac{2 \left\{ \frac{f(x) + 1}{1 - f(x)} \right\} - 1}{2 \left(\frac{f(x) + 1}{1 - f(x)} \right) + 1} = \frac{3 f(x) + 1}{f(x) + 3}$$

8 **(a)**

Since,
$$f(-x) = -f(x)$$
 and $f(x + 2) = f(x)$

$$f(x) = f(0)$$
 and $f(-2) = f(-2 + 2) = f(0)$

Now,
$$f(0) = f(-2) = -f(2) = -f(0)$$

$$\Rightarrow 2f(0) = 0 \Rightarrow f(0) = 0$$

$$f(4) = f(2) = f(0) = 0$$

9 (

We observe that $\frac{1}{x^2 - 36}$ is not defined for $x = \pm 6$

Also,
$$\sqrt{\log_{0.4} \left(\frac{x-1}{x+5}\right)}$$
 is a real number, if

$$0 < \frac{x-1}{x++5} \le 1$$

$$\Rightarrow 0 < \frac{x-1}{x+5}$$
 and $\frac{x-1}{x+5} \le 1$

$$\Rightarrow (x-1)(x+5) > 0 \text{ and } 1 - \frac{6}{x+5} \le 1$$

$$\Rightarrow (x < -5 \text{ or } x > 1) \text{ and } -\frac{6}{x+5} \le 0$$

$$\Rightarrow$$
 ($x < -5$ or $x > 1$) and $x + 5 > 0$

$$\Rightarrow$$
 ($x < -5$ or $x > 1$) and $x > -5$

Hence, domain of $f(x) = (1, \infty) - \{6\}$

10 (b)

Given, $f(x) = \log_2(\log_3(\log_4 x))$

We know, $\log_a x$ is defined, if x > 0

For f(x) to be defined.

 $\log_3 \log_4 x > 0$, $\log_4 x > 0$ and x > 0

$$\Rightarrow \log_4 x > 3^0 = 1, x > 4^0 = 1 \text{ and } x > 0$$

$$\Rightarrow x > 4, x > 1 \text{ and } x > 0$$

$$\Rightarrow$$
 $x > 4$

11 (c)

We have.

$$f(x) = \begin{cases} -3x + 9, & \text{if } x < 2\\ x - 3, & \text{if } 2 \le x < 3\\ x - 1, & \text{if } 3 \le x < 4\\ 3x - 9, & \text{if } x \ge 4 \end{cases}$$

$$\therefore g(x) = f(x+1) = \begin{cases} -3x + 6, & \text{if } x < 1\\ x - 2, & \text{if } 1 \le x < 2\\ x, & \text{if } 2 \le x < 3\\ 3x - 6, & \text{if } x \ge 3 \end{cases}$$

Clearly, g(x) is neither even nor odd. Also, g(x) is not a periodic function

12 (b)

We have.

 $f:[2,\infty)\to B$ such that $f(x)=x^2-4x+5$

Since f is a bijection. Therefore, B = Range of f

$$f(x) = x^2 - 4x + 5 = 5 = (x - 2)^2 + 1$$
 for all $x \in [2, \infty)$

$$\Rightarrow f(x) \ge 1 \text{ for all } x \in [2,\infty) \Rightarrow \text{Range of } f = [1,\infty)$$

Hence, $B = [1, \infty)$

13 (d)

Given, $R = \{(x, y): 4x + 3y = 20\}.$

Since, R is a relation on N, therefore x, y are the elements of N. But in options (a) and (b) elements are not natural numbers and option (c) does not satisfy the given relation 4x + 3y = 20.

14 (b)

Since the function $f:R \to R$ given by $f(x) = x^3 + 5$ is a bijection. Therefore, f^{-1} exists

Let f(x) = y. Then,

$$x^3 + 5 = y$$

$$\Rightarrow x = (y - 5)^{1/3} \quad [\because f(x) = y \Leftrightarrow x = f^{-1}(y)]$$
Hence, $f^{-1}(x) = (x - 5)^{1/3}$

Hence,
$$f^{-1}(x) = (x-5)^{1/3}$$

15

We have,

$$f(x) = x, g(x) = |x| \text{ for all } x \in R$$

$$[\phi(x) - f(x)]^2 + [\phi(x) - g(x)]^2 = 0$$

$$\Rightarrow \Phi(x) - f(x) = 0$$
 and $\Phi(x) - g(x) = 0$

$$\Rightarrow \phi(x) = f(x)$$
 and $\phi(x) = g(x)$

 $\Rightarrow f(x) = g(x) = \phi(x)$

But, f(x) = g(x) = x, for all $x \ge 0$ [: |x| = x for all $x \ge 0$]

 $\therefore \varphi(x) = x \text{ for all } x \in [0, \infty)$

16 **(b)**

Since f(x) is defined for $x \in [0, 1]$. Therefore, f(2x + 3) exists if

$$0 \le 2x + 3 \le 1 \Rightarrow -\frac{3}{2} \le x \le -1 \Rightarrow x \in [-3/2, -1]$$

18 **(a)**

$$fog(-1) = f\{g(-1)\}\$$

= $f(-7) = 5 - 49 = -44$

19 **(a)**

We have,

$$f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}} \text{ for all } x \in R$$

Clearly, f(-x) = f(x) for all $x \in R$

So, *f* is a many-one function

Also,
$$e^{x^2} > e^{-x^2} > 0$$

So, f(x) attains only positive values

Consequently, range of $\neq R$

Hence, *f* is many-one into function

20 **(c**)

Let $x, y \in N$ such that f(x) = f(y)

$$\Rightarrow x^2 + x + 1 = y^2 + y + 1$$

$$\Rightarrow (x-y)(x+y+1) = 0$$

$$\Rightarrow$$
 $x = y \text{ or } x = (-y - 1) \notin N$

 $\therefore f$ one-one.

Also, f is not onto.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	A	С	В	D	В	A	С	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	D	В	A	В	В	A	A	С

