

CLASS : XIIth DATE :

SOLUTIONS

SUBJECT: MATHS

DPP NO.:4

Topic:-RELATIONS AND FUNCTIONS

1 **(a)**

Let
$$f^{-1}(x) = y$$
. Then,

$$x = f(y) \Rightarrow x = 3 \ y - 4 \Rightarrow y = \frac{x+4}{3}$$

$$f^{-1}(x) = y \Rightarrow f^{-1}(x) = \frac{x+4}{3}$$

2 **(d**)

Here, we have to find the range of the function which is [-1/3, 1]

3 **(a**)

For f(x) to be real, we must have

$$x > 0$$
 and $\log_{10} x \neq 0$

$$\Rightarrow x > 0$$
 and $x \neq 1 \Rightarrow x > 0$ and $x \neq 1 \Rightarrow x \in (0, 1) \cup (1, \infty)$

4 (a)

Let
$$W = \{cat, toy, you, ...\}$$

Clearly, *R* is reflexive and symmetric but not transitive.

[Since, $_{cat}R_{toy}$, $_{toy}R_{you} \Rightarrow _{cat}R_{you}$]

5 (0

Given,
$$f(x) = \frac{ax + b}{cx + d}$$

It reduces the constant function if

$$\frac{a}{c} = \frac{b}{d} \Rightarrow ad = bc$$

7 (c

Since, the relation ${\cal R}$ is defined as

 $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for some rational number } w\}$

(i) Reflexive $xRx \Rightarrow x = wx$

 $w = 1 \in \text{Rational number}$

 \Rightarrow The relation R is reflexive.

(ii) Symmetric $xRy \Rightarrow yRx$

As 0*R*1

$$\Rightarrow 0 = 0 (1) \text{ but } 1R0 \Rightarrow 1 = w.(0),$$

Which is not true for any rational number

 \Rightarrow The relation R is not symmetric

Thus, R is not equivalent relation.

Now, for the relation *S* is defined as

$$S = \left\{ \left(\frac{m}{n}, \frac{m}{n} \right) \right|$$

m, n, p and $q \in \text{integers such that } n, q \neq 0 \text{ and } qm = pn$

- (i) Reflexive $\frac{m}{n}S^{\frac{m}{n}} \Rightarrow mn = mn$ (True)
- \Rightarrow The relation *S* is reflexive

(ii) Symmetric
$$\frac{m}{n}S_q^p \Rightarrow mq = np$$

$$\Rightarrow np = mq \Rightarrow \frac{p}{q}S\frac{m}{n}$$

 \Rightarrow The relation *S* is symmetric.

(iii) Transitive
$$\frac{m}{n}S^{\frac{p}{q}}$$
 and $\frac{p}{q}S^{\frac{r}{s}}$

$$\Rightarrow mq = np \text{ and } ps = rq$$

$$\Rightarrow mq.ps = np.rq$$

$$\Rightarrow ms = nr \Rightarrow \frac{m}{n} = \frac{r}{s} \Rightarrow \frac{m}{n} S \frac{r}{s}$$

- \Rightarrow The relation *S* is transitive
- \Rightarrow The relation *S* is equivalent relation.

We know that $\tan x$ has period π . Therefore, $|\tan x|$ has period $\frac{\pi}{2}$. Also, $\cos 2x$ has period π .

Therefore, period of $|\tan x| + \cos 2x$ is π .

Clearly, $2\sin\frac{\pi x}{3} + 3\cos\frac{2\pi x}{3}$ has its period equal to the LCM of 6 and 3 i.e., 6

 $6\cos(2\pi x + \pi/4) + 5\sin(\pi x + 3\pi/4)$ has period 2

The function $|\tan 4x| + |\sin 4x|$ has period $\frac{\pi}{2}$

Let
$$y = f(x) = \sqrt{(x-1)(3-x)}$$

$$\Rightarrow x^2 - 4x + 3 + y^2 = 0$$

This is a quadratic in x, we get

$$x = \frac{+4 \pm \sqrt{16 - 4(3 + y^2)}}{2(1)} = \frac{4 \pm 2\sqrt{1 - y^2}}{2(1)}$$

Since, *x* is real, then $1 - y^2 \ge 0 \Rightarrow -1 \le y \le 1$

But f(x) attains only non-negative values.

Hence,
$$y = f(x) = [0, 1]$$

 $\{(z, b), (y, b), (a, d)\}$ is not a relation from A to B because $a \notin A$

12 **(a)**

For $x \ge 1$, we have

$$x \le x^2 \Rightarrow \min\{x, x^2\} = x$$

For
$$0 \le x < 1$$
, we have,

$$x^2 < x \Rightarrow \min\{x, x^2\} = x^2$$

For
$$x < 0$$
, we have

$$x < x^2 \Rightarrow \min\{x, x^2\} = x$$

Hence,
$$f(x) = \min\{x, x^2\} = \begin{cases} x, & x > 1\\ x^2, & 0 \le x < 1\\ x, & x < 0 \end{cases}$$

ALITER Draw the graphs of y = x and $y = x^2$ to obtain f(x)

13

Clearly, mapping f given in option (a) satisfies the given conditions

Given,
$$f(x) = e^{\sqrt{5x-3-2x^2}}$$

For domain of f(x)

$$2x^2 - 5x + 3 \le 0$$

$$\Rightarrow (2x-3)(x-1) \leq 0$$

$$\Rightarrow$$

$$1 \le x \le \frac{3}{2}$$

$$\therefore$$
 Domain of $f(x) = \left[1, \frac{3}{2}\right]$.

(d)

Given,
$$f(x) = x + \sqrt{x^2}$$

Since, this function is not defined

16 (a)

We have.

$$f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}$$

$$\Rightarrow f(x) = \frac{(1 - \cos^2 x)^2 + \cos^2 x}{1 - \cos^2 x + \cos^4 x} = 1 \quad \text{for all } x \in R$$

$$f(2010) = 1$$

We have,

$$f(x) = \log\{ax^3 + (a+b)x^2 + (b+c)x + c\}$$

$$\Rightarrow f(x) = \log\{(ax^2 + bx + c)(x+1)\}\$$

$$\Rightarrow f(x) = \log \left\{ a \left(x + \frac{b}{2a} \right)^2 (x+1) \right\}$$

$$\Rightarrow f(x) = \log a + \log \left(x + \frac{b}{2a}\right)^2 + \log(x+1)$$

Since a > 0, therefore f(x) is defined for $x \neq -\frac{b}{2a}$ and x + 1 > 0

i.e.,
$$x \in R - \left\{ \left\{ -\frac{b}{2a} \right\} \cap (-\infty, -1) \right\}$$

18

$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$

$$\Rightarrow \frac{y+1}{y-1} = \frac{10^x}{-10^{-x}}$$

[using componendo and dividendo rule]

$$\Rightarrow 10^{2x} = \frac{1+y}{1-y}$$

$$\Rightarrow 2x \log_{10} 10 = \log_{10} \left(\frac{1+y}{1-y}\right)$$

$$\Rightarrow x = \frac{1}{2} \log_{10} \left(\frac{1+y}{1-y} \right)$$

$$f^{-1}(x) = \frac{1}{2} \log_{10} \left(\frac{1+x}{1-x} \right)$$

19 **(b**)

Given, $f(x) = \begin{cases} -1, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$

Now,
$$(f \circ f)(1 - \sqrt{3}) = f[f(1 - \sqrt{3})] = f(1) = -1$$

20 **(c)**

We have,

$$f(x) = 6^x + 6^{|x|} > 0$$
 for all $x \in R$

$$\therefore$$
 Range $(f) \neq (Co - domain $(f)$$

So, $f:R \rightarrow R$ is an into function

For any $x,y \in R$, we find that

$$x \neq y \Rightarrow 2^x \neq 2^y \Rightarrow 2^{x+|x|} \neq 2^{y+|y|} \Rightarrow f(x) \neq f(y)$$

So, *f* is one-one

Hence, *f* is a one-one into function

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	A	A	С	С	С	A	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	A	A	В	D	A	С	A	В	С

