CLASS : XIIth

Topic :-RELATIONS AND FUNCTIONS

1
(a)

Let $f^{-1}(x)=y$. Then,
$x=f(y) \Rightarrow x=3 y-4 \Rightarrow y=\frac{x+4}{3}$
$\therefore f^{-1}(x)=y \Rightarrow f^{-1}(x)=\frac{x+4}{3}$
2
(d)

Here, we have to find the range of the function which is $[-1 / 3,1]$
3 (a)
For $f(x)$ to be real, we must have
$x>0$ and $\log _{10} x \neq 0$
$\Rightarrow x>0$ and $x \neq 1 \Rightarrow x>0$ and $x \neq 1 \Rightarrow x \in(0,1) \cup(1, \infty)$
4
(a)

Let $W=\{$ cat, toy, you,... $\}$
Clearly, R is reflexive and symmetric but not transitive.
[Since, cat $R_{\text {toy }}$ toy $R_{\text {you }} \nRightarrow$ cat $R_{\text {you }}$]
5
(c)

Given, $f(x)=\frac{a x+b}{c x+d}$
It reduces the constant function if

$$
\frac{a}{c}=\frac{b}{d} \Rightarrow a d=b c
$$

7
(c)

Since, the relation R is defined as
$R=\{(x, y) \mid x, y$ are real numbers and $x=w y$ for some rational number $w\}$
(i) Reflexive $x R x \Rightarrow x=w x$
$\therefore \quad w=1 \in$ Rational number
\Rightarrow The relation R is reflexive.
(ii) Symmetric $x R y \Rightarrow y R x$

As $0 R 1$
$\Rightarrow 0=0$ (1) but $1 R 0 \Rightarrow 1=w .(0)$,
Which is not true for any rational number
\Rightarrow The relation R is not symmetric
Thus, R is not equivalent relation.

Now, for the relation S is defined as
$\mathrm{S}=\left\{\left.\left(\frac{m}{n}, \frac{m}{n}\right) \right\rvert\,\right.$
m, n, p and $q \in$ integers such that $n, q \neq 0$ and $q m=p n\}$
(i) Reflexive $\frac{m}{n} S \frac{m}{n} \Rightarrow m n=m n$ (True)
\Rightarrow The relation S is reflexive
(ii) Symmetric $\frac{m}{n} S_{q}^{\frac{p}{p}} \Rightarrow m q=n p$
$\Rightarrow n p=m q \Rightarrow \frac{p}{q} S \frac{m}{n}$
\Rightarrow The relation S is symmetric.
(iii) Transitive $\frac{m}{n} S \frac{p}{q}$ and $\frac{p}{q} S \frac{r}{s}$
$\Rightarrow m q=n p$ and $p s=r q$
$\Rightarrow m q . p s=n p . r q$
$\Rightarrow m s=n r \Rightarrow \frac{m}{n}=\frac{r}{s} \Rightarrow \frac{m}{n} S \frac{r}{s}$
\Rightarrow The relation S is transitive
\Rightarrow The relation S is equivalent relation.
8 (a)
We know that $\tan x$ has period π. Therefore, $|\tan x|$ has period $\frac{\pi}{2}$. Also, $\cos 2 x$ has period π.
Therefore, period of $|\tan x|+\cos 2 x$ is π.
Clearly, $2 \sin \frac{\pi x}{3}+3 \cos \frac{2 \pi x}{3}$ has its period equal to the LCM of 6 and 3 i.e., 6
$6 \cos (2 \pi x+\pi / 4)+5 \sin (\pi x+3 \pi / 4)$ has period 2
The function $|\tan 4 x|+|\sin 4 x|$ has period $\frac{\pi}{2}$
9 (a)
Let $y=f(x)=\sqrt{(x-1)(3-x)}$
$\Rightarrow x^{2}-4 x+3+y^{2}=0$
This is a quadratic in x, we get
$x=\frac{+4 \pm \sqrt{16-4\left(3+y^{2}\right)}}{2(1)}=\frac{4 \pm 2 \sqrt{1-y^{2}}}{2(1)}$
Since, x is real, then $1-y^{2} \geq 0 \Rightarrow-1 \leq y \leq 1$
But $f(x)$ attains only non-negative values.
Hence, $y=f(x)=[0,1]$
10
(d)
$\{(z, b),(y, b),(a, d)\}$ is not a relation from A to B because $a \notin A$
12 (a)
For $x \geq 1$, we have
$x \leq x^{2} \Rightarrow \min \left\{x, x^{2}\right\}=x$
For $0 \leq x<1$, we have,
$x^{2}<x \Rightarrow \min \left\{x, x^{2}\right\}=x^{2}$
For $x<0$, we have
$x<x^{2} \Rightarrow \min \left\{x, x^{2}\right\}=x$

Hence, $f(x)=\min \left\{x, x^{2}\right\}=\left\{\begin{array}{cl}x, & x>1 \\ x^{2}, & 0 \leq x<1 \\ x, & x<0\end{array}\right.$
ALITER Draw the graphs of $y=x$ and $y=x^{2}$ to obtain $f(x)$
13
(a)

Clearly, mapping f given in option (a) satisfies the given conditions
14
(b)

Given, $f(x)=e^{\sqrt{5 x-3-2 x^{2}}}$
For domain of $f(x)$

$$
2 x^{2}-5 x+3 \leq 0
$$

$\Rightarrow(2 x-3)(x-1) \leq 0$
$\Rightarrow \quad 1 \leq x \leq \frac{3}{2}$
\therefore Domain of $f(x)=\left[1, \frac{3}{2}\right]$.
15 (d)
Given, $f(x)=x+\sqrt{x^{2}}$
Since, this function is not defined

16
 (a)

We have,
$f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$
$\Rightarrow f(x)=\frac{\left(1-\cos ^{2} x\right)^{2}+\cos ^{2} x}{1-\cos ^{2} x+\cos ^{4} x}=1 \quad$ for all $x \in R$
$\therefore f(2010)=1$
17
(c)

We have,
$f(x)=\log \left\{a x^{3}+(a+b) x^{2}+(b+c) x+c\right\}$
$\Rightarrow f(x)=\log \left\{\left(a x^{2}+b x+c\right)(x+1)\right\}$
$\Rightarrow f(x)=\log \left\{a\left(x+\frac{b}{2 a}\right)^{2}(x+1)\right\}$
$\Rightarrow f(x)=\log a+\log \left(x+\frac{b}{2 a}\right)^{2}+\log (x+1)$
Since $a>0$, therefore $f(x)$ is defined for $x \neq-\frac{b}{2 a}$ and $x+1>0$ i.e., $x \in R-\left\{\left\{-\frac{b}{2 a}\right\} \cap(-\infty,-1)\right\}$

18 (a)

$\because \quad y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$
$\Rightarrow \quad \frac{y+1}{y-1}=\frac{10^{x}}{-10^{-x}}$
[using componendo and dividendo rule]
$\Rightarrow \quad 10^{2 x}=\frac{1+y}{1-y}$
$\Rightarrow \quad 2 x \log _{10} 10=\log _{10}\left(\frac{1+y}{1-y}\right)$
$\Rightarrow \quad x=\frac{1}{2} \log _{10}\left(\frac{1+y}{1-y}\right)$
$\therefore \quad f^{-1}(x)=\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)$
19 (b)
Given, $\quad f(x)=\left\{\begin{array}{l}-1, \text { when } x \text { is rational } \\ 1, \text { when } x \text { is irrational }\end{array}\right.$
Now, $(f o f)(1-\sqrt{3})=f[f(1-\sqrt{3})]=f(1)=-1$
20
(c)

We have,
$f(x)=6^{x}+6^{|x|}>0$ for all $x \in R$
\therefore Range $(f) \neq(\mathrm{Co}-$ domain (f)
So, $f: R \rightarrow R$ is an into function
For any $x, y \in R$, we find that
$x \neq y \Rightarrow 2^{x} \neq 2^{y} \Rightarrow 2^{x+|x|} \neq 2^{y+|y|} \Rightarrow f(x) \neq f(y)$
So, f is one-one
Hence, f is a one-one into function

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | D | A | A | C | C | C | A | A | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | A | A | B | D | A | C | A | B | C |
| | | | | | | | | | | |

