

$$f(x) = \log\left(\frac{1+x}{1-x}\right) \text{ and } g(x) = \frac{3x+x^3}{1+3x^2}$$

$$\therefore fog(x) = f(g(x))$$

$$\Rightarrow fog(x) = f\left(\frac{3x+x^3}{1+3x^2}\right) = \log\left(\frac{1+\frac{3x+x^3}{1+3x^2}}{1-\frac{3x+x^3}{1+3x^2}}\right) = \log\left\{\frac{(1+x)^3}{(1-x)^3}\right\}$$

$$(1+x)^3 = (1+x)^3$$

$$\Rightarrow fog(x) = \log\left(\frac{1+x}{1-x}\right)^{3} = 3\log\left(\frac{1+x}{1-x}\right) = 3f(x)$$

6 **(b)**

For choice (a), we have $f(x) = f(y); x, y \in [-1, \infty)$ $\Rightarrow |x+1| = |y+1| \Rightarrow x+1 = y+1 \Rightarrow x = y$ So, *f* is an injection

For choice (b), we obtain

$$g(2) = \frac{5}{2} \text{ and } g\left(\frac{1}{2}\right) = \frac{5}{2}$$

So, g(x) is not injective

It can be easily seen that the functions in choices in options (c) and (d) are injective maps

7 **(b)**
Given,
$$f(x) = x - [x], g(x) = [x]$$
 for $x \in R$.
 $\therefore f(g(x)) = f([x])$
 $= [x] - [x]$
 $= 0$

8 (a)

We have,

$$f(x) = \sqrt{\frac{\log_{0.3}|x - 2|}{|x|}}$$

We observe that f(x) assumes real values, if

$$\frac{\log_{0.3}|x-2|}{|x|} \ge 0 \text{ and } |x-2| > 0$$

 $\Rightarrow \log_{0.3}|x-2| \ge 0$ and $x \ne 0, 2$

$$\Rightarrow |x-2| < 1 \text{ and } x \neq 0.2$$

 $\Rightarrow |x - 2| \le 1 \text{ and } x \ne 0, 2$ $\Rightarrow x \in [1, 3] \text{ and } x \ne 2 \Rightarrow x \in [1, 2) \cup (2, 3]$

Since $g(x) = 3\sin x$ is a many-one function. Therefore, $f(x) - 3\sin x$ is many-one Also, $-1 \le \sin x \le 1$

 $\Rightarrow -3 \leq -3 \sin x + 3$

$$\Rightarrow 2 \le 5 - 3 \sin x \le 8$$

$$\Rightarrow 2 \le f(x) \le 8 \Rightarrow \text{Range of } f(x) = [2, 8] \neq R$$

So,
$$f(x)$$
 is not onto

Hence, f(x) is neither one-one nor onto 10 (a) We have, f(x + 2y, x - 2y) = xy(i) Let x + 2y = u and x - 2y = v. Then, $x = \frac{u+v}{2}$ and $y = \frac{u-v}{4}$ Substituting the values of *x* and *y* in (i), we obtain $f(u,v) = \frac{u^2 - v^2}{2}$ and $f(x,y) = \frac{x^2 - y^2}{8}$ 11 (c) Given, $f(x) = y = (1 - x)^{1/3}$ $\Rightarrow y^3 = 1 - x$ $\Rightarrow x = 1 - y^3$: $f^{-1}(x) = 1 - x^3$ 12 (a) We have, f(x + 2y, x - 2y) = xy...(i) x + 2y = u and x - 2y = vLet $x = \frac{u+v}{2}$ and $y = \frac{u-v}{4}$ Then, Subtracting the values of *x* and *y* in Eq. (i), we obtain $f(u, v) = \frac{u^2 - v^2}{8} \Rightarrow f(x, y) = \frac{x^2 - y^2}{8}$ 13 (d) Given, $f(x) = 5^{x(x-4)}$ for $f:[4, \infty[\rightarrow [4, \infty[$ At x = 4 $f(x) = 5^{4(4-4)} = 1$ Which is not lie in the interval $[4, \infty)$ ∴ Function is not bijective. Hence, $f^{-1}(x)$ is not defined. 14 (b) Given, $f(x) = x^3 + 3x - 2$ On differentiating w.r.t. *x*, we get $f'(x) = 3x^2 + 3$ Put $f'(x) = 0 \Rightarrow 3x^2 + 3 = 0$ $x^2 = -1$ ⇒ \therefore f(x) is either increasing or decreasing. At x = 2, $f(2) = 2^3 + 3(2) - 2 = 12$ At x = 3, $f(3) = 3^3 + 3(3) - 2 = 34$ $:: f(x) \in [12, 34]$ 15 (b) We have, $f(\theta) = \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$

 $\therefore f(\theta)$ is periodic with period $\frac{2\pi}{2} = \pi$ 16 (c) Since, period of $\cos nx = \frac{2\pi}{n}$ And period of $\sin\left(\frac{x}{n}\right) = 2n\pi$ \therefore Period of $\frac{\cos nx}{\sin\left(\frac{x}{2}\right)}$ is $2n\pi$ $\Rightarrow 2n\pi = 4\pi \Rightarrow n = 2$ 17 (c) Given, $f(x) = x^3 + 5x + 1$ Now, $f'(x) = 3x^2 + 5 > 0, \forall x \in R$ \therefore f(x) is strictly increasing function. \therefore *f*(*x*) is one-one function. Clearly, f(x) is a continous function and also increasing on R, $\lim f(x) = -\infty and \lim = \infty$ $x \rightarrow -\infty$ $x \rightarrow \infty$ \therefore *f*(*x*) takes every value between $-\infty$ and ∞ Thus, f(x) is onto function. 18 (c) The function $f(x) = \frac{1}{2 - \cos 3x}$ is defined for all $x \in R$. Therefore, domain of f(x) is R Let f(x) = y. Then, $\frac{1}{2 - \cos 3x} = y \text{ and } y > 0$ $\Rightarrow 2 - \cos 3x = \frac{1}{y}$ $\Rightarrow \cos 3 x = \frac{2 y - 1}{v} \Rightarrow x = \frac{1}{3} \cos^{-1} \left(\frac{2 y - 1}{v} \right)$ Now. $x \in R$, if $-1 \leq \frac{2y-1}{y} \leq 1$ $\Rightarrow -1 \leq 2 - \frac{1}{\nu} \leq 1$ $\Rightarrow -3 \leq -\frac{1}{v} \leq -1$ $\Rightarrow 3 \ge \frac{1}{\nu} \ge 1 \Rightarrow \frac{1}{3} \le y \le 1 \Rightarrow y \in [1/3, 1]$ 19 (c) Given, *A* = {2, 3, 4, 5,...,16, 17, 18} And (a, b) = (c, d) \therefore Equivalence class of (3, 2) is $\{(a, b) \in A \times A: (a, b) R (3, 2)\}$ $= \{(a, b) \in A \times A : 2a = 3b\}$

 $= \left\{ (a, b) \in A \times A: b = \frac{2}{3}a \right\}$ $\left\{ \left(a, \frac{2}{3}a \right): a \in A \times A \right\}$ $= \left\{ (3, 2), (6, 4), (9, 6), (12, 8), (15, 10), (18, 12) \right\}$ \therefore Number of ordered pairs of the equivalence class=6. 20 (c) Given function is $f(n) = 8 - {}^{n}P_{n-4}, 4 \le n \le 6$. It is defined, if $1.8 - n > 0 \Rightarrow n < 8$...(i) $2.n - 4 \ge 0 \Rightarrow n \ge 4$...(ii) $3.n - 4 \le 8 - n \Rightarrow n \le 6$...(iii) From Eqs. (i), (ii) and (iii), we get n = 4, 5, 6Hence, range of $f(n) = \left\{ {}^{4}P_{0}, {}^{3}P_{1}, {}^{2}P_{2} \right\} = \{1, 3, 2\}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	В	С	С	В	В	В	А	D	А
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	A	D	В	В	С	C	С	С	C

