CLASS : XIIth
DATE :

SOLUTIONS

Topic :-PROBABILITY

1
(d)

Since there are r cars in N places, total number of selection of places out of $N-1$ places for $r-1$ cars (excepting the owner's car) is,
${ }^{N-1} C_{r-1}=\frac{(N-1)!}{(r-1)!(N-r)!}$
If neighboring places are empty, then $r-1$ cars must be parked in $N-3$ places. So, the favourable number of cases is
${ }^{N-3} C_{r-1}=\frac{(n-3)!}{(r-1)!(N-r-2)!}$
Therefore, the required probability is
$\frac{(N-3)!}{(r-1)!(N-r-2)!} \times \frac{(r-1)!(N-r)!}{(N-1)!}$
$=\frac{(N-1)(N-r-1)}{(N-1)(N-2)}=\frac{{ }^{N-r} C_{2}}{{ }^{N-1} C_{2}}$
2
(a)

We have,
$n(S)={ }^{64} C_{3}$
Let ' E ' be the event selecting 3 squares which form the letter ' L '.
The number of ways of selecting squares consisting of 4 unit squares is $7 \times 7=49$
Each square with 4 unit squares form 4 L -shapes consisting of 3 unit squares
$\therefore n(E)=7 \times 7 \times 4=196$
$\therefore P(E)=\frac{196}{{ }^{64} C_{3}}$
3 (a)
Required probability $=\frac{\text { No.of favourite cases }}{\text { Total no.of exhaustive cases }}$
$=\frac{3}{3 \times 3 \times 3}-\frac{1}{9}$
4
(b)

The sum of the digits can be 7 in the following ways: $07,16,25,34,43,52,61,70$
$\therefore(A=7)=\{07,16,25,34,43,52,61,70\}$
Similarly,
$(B=0)=\{00,01,02, \ldots 10,20,30, \ldots, 90\}$
Thus,
$(A=7) \cap(B=0)=\{09,70\}$
$\therefore P((A=7) \cap(B=0))=\frac{2}{100}, P((B=0))=\frac{19}{100}$
Hence,

$$
\begin{aligned}
& P(A=7 \mid B=0)=\frac{P((A=7) \cap(B=0))}{P(B=0)} \\
& =\frac{\frac{2}{100}}{\frac{19}{100}}=\frac{2}{19}
\end{aligned}
$$

$$
5
$$

(d)
A : Doctor finds a rash
B_{1} : Child has measles
S : Sick children
$P(S / F)=0.9$
B_{2} : Child has flu $\Rightarrow P\left(B_{2}\right)=9 / 10$
$P(S / M)=0.10$
$P\left(A / B_{1}\right)=0.95$
$P(R / M)=0.95$
$P\left(A / B_{2}\right)=0.08$
$P(R / F)=0.08$
$P\left(B_{1} / A\right)=\frac{0.1 \times 0.95}{0.1 \times 0.95+0.9 \times 0.08}$
$=\frac{0.095}{0.095+0.072}$
$=\frac{0.095}{0.167}=\frac{95}{167}$
6
(c)

Let A denote the event that target is hit when x shells are filled at point I. Let P_{1} and P_{2} denote the event that the target is at point I and II, respectively. We have $P\left(P_{1}\right)=8 / 9, P\left(P_{2}\right)=1 / 9, P\left(A / P_{1}\right.$
$)=1-(1 / 2)^{x}, P\left(A / P_{2}\right)=1-(1 / 2)^{55-x}$
Now from total probability theorem

$$
\begin{aligned}
& P(A)=P\left(P_{1}\right) P(A / P)+P\left(P_{2}\right) P\left(A / P_{2}\right) \\
& =\frac{1}{9}\left(8-8\left(\frac{1}{2}\right)^{x}+1-\left(\frac{1}{2}\right)^{55-x}\right) \\
& =\frac{1}{9}\left(9-8\left(\frac{1}{2}\right)^{x}-\left(\frac{1}{2}\right)^{55-x}\right)
\end{aligned}
$$

Now,
$\frac{d P(A)}{d x}=\frac{1}{9}\left(-8\left(\frac{1}{2}\right)^{x} \operatorname{In}\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{55-x} \operatorname{In}\left(\frac{1}{2}\right)\right)$
(Note that in this step, it is being assumed that $x \in R^{+}$)
$=\frac{1}{9} \operatorname{In}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{55-x}\left(1-\left(\frac{1}{2}\right)^{2 x-58}\right)$
>0 if $x<29$
<0 if $x>29$
Therefore, $P(A)$ is maximum at $x=29$. Thus, ' 29 ' shells must be fired at point I
7
(d)

In the first case, the urn constains 3 red and n white balls. The probability that colour of both the balls matches is
$\frac{{ }^{3} C_{2}{ }^{n} C_{2}}{{ }^{n+3} C_{2}}=\frac{1}{2}$
$\Rightarrow \frac{6+n(n-1)}{(n+3)(n+2)}=\frac{1}{2}$
$\Rightarrow 2\left(n^{2}-n+6\right)=n^{2}+5 n+6$
$\Rightarrow v n^{2}-7 n+6=0$
$\Rightarrow n=1$ or 6
In the second case,
$\frac{3}{n+3} \frac{3}{n+3}+\frac{n}{n+3} \frac{n}{n+3}=\frac{5}{8}$
Solving, we get
$n^{2}-10 n+9=0$
$\Rightarrow n=9$ or 1
From Eqs.(1) and (2), we have $n=1$
8 (b)
$P(E)+P\left(E^{\prime}\right)=1=1+\lambda+\lambda^{2}+(1+\lambda)^{2}$
$\Rightarrow 2 \lambda^{2}+3 \lambda+1=0$
$\Rightarrow(2 \lambda+1)+(\lambda+1)=0$
$\Rightarrow \lambda=-1,-\frac{1}{2}$
Then, $P(E)=1+(-1)+(-1)^{2}=1$ (not possible)
$\Rightarrow P(E)=1+\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$

9 (a)

Consider the following events:
A : ball drawn is black
E_{1} :bag I is chosen
E_{2} : bag II is chosen
E_{3} : bag III is chosen
Then,
$P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=\frac{1}{3}$
$P\left(A / E_{1}\right)=\frac{3}{5}, P\left(A / E_{2}\right)=\frac{1}{5}, \quad P\left(A / E_{3}\right)=\frac{7}{10}$
Therefore, the required probability is

$$
\begin{aligned}
& P\left(E_{3} / A\right) \\
& =\frac{P\left(E_{3}\right) P\left(A / E_{3}\right)}{P\left(E_{1}\right) P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) P\left(\frac{A}{E_{2}}\right)}=\frac{7}{15} \\
& \quad+P\left(E_{3}\right) P\left(A / E_{3}\right)
\end{aligned}
$$

10
(a)

For ranked 1 and 2 players to be winners and runners up, respectively, they should not be paired with each other in any round. Therefore, the required probability is

$$
30 / 31 \times 14 / 15 \times 6 / 7 \times 2 / 3=16 / 31
$$

11 (c)
Total number of the students is 80 . Total number of girls is 25 . Total number of boys is 55 . There are 10 rich, 70 poor, 20 intelligent students in the class. Therefore, required probability is
$\frac{1}{4} \times \frac{1}{8} \times \frac{25}{80}=\frac{5}{512}$
(I) (R) (G)

12
(d)

The probability that the first critic favours the book is
$P\left(E_{1}\right)=\frac{5}{5+2}-\frac{5}{7}$
The probability that the second critic favours the book is
$P\left(E_{2}\right)=\frac{4}{4+3}=\frac{4}{7}$
The probability that the third critic favours the book is
$P\left(E_{3}\right)=\frac{3}{3+4}=\frac{3}{7}$
Majority will be in favour of the book if at least two crities favour the book. Hence, the probability is $P\left(E_{1} \cap E_{2} \cap \overline{E_{3}}\right)+P\left(E_{1} \cap \overline{E_{2}} \cap E_{3}\right)+P\left(\overline{E_{1}} \cap E_{2} \cap E_{3}\right)+P\left(E_{1} \cap E_{2} \cap E_{3}\right)$
$=P\left(E_{1}\right) P\left(E_{2}\right) P\left(\overline{E_{3}}\right)+P\left(E_{1}\right) P\left(\overline{E_{2}}\right) P\left(E_{3}\right)+P\left(\overline{E_{1}} \cap E_{2} \cap E_{3}\right)+P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right)$
$=\frac{5}{7} \times \frac{4}{7} \times\left(1-\frac{3}{7}\right)+\frac{5}{7} \times\left(1-\frac{4}{7}\right) \times \frac{3}{7}+\left(1-\frac{5}{7}\right) \times \frac{4}{7} \times \frac{3}{7}+\frac{5}{7} \times \frac{4}{7} \times \frac{3}{7}$
$=\frac{209}{343}$
13
(b)

The required probability is
$\frac{n^{2}}{{ }^{2 n} C_{2}} \frac{(n-1)^{2}}{{ }^{2 n-2} C_{2}} \frac{(n-2)^{2}}{{ }^{2 n-4} C_{2}} \ldots \frac{2^{2}}{{ }^{4} C_{2}} \frac{1^{2}}{{ }^{2} C_{2}}$
$=\frac{\left(1 \times 2 \times 3 \times 4 \times \ldots \times(n-1) n^{2}\right)}{\frac{(2 n)!}{2^{n}}}=\frac{2^{n}(n)^{2}}{(2 n)!}=\frac{2^{n}}{{ }^{2 n} C_{n}}$
14
(c)
$f^{\prime}(x)=3 x^{2}+2 a x+9$
$y=f(x)$ is increasing
$\Rightarrow f^{\prime}(x) \geq 0, \forall x$ and for $f^{\prime}(x)=0$ should not form an interval
$\Rightarrow(2 a)^{2}-4 \times 3 \times b \leq 0 \Rightarrow a^{2}-3 b \leq 0$

This is true for exactly 16 ordered pairs $(a, b) \leq a, b \leq 6$, namely $(1,1),(1,2),(1,3)(1,4),(1,5),(1$, $6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,6$ and $(4,6)$. Thus, the required probability is $16 / 36=4 / 9$
15
(b)

There are 10 digits $0,1,2,3,4,5,6,7,8,9$. The last two digits can be dialed in ${ }^{10} P_{2}=90$ ways out of which only one way is favourable, thus, the required probability is $1 / 90$

16 (a)

Let E_{i} denote the event that the bag contains i black and $(10-i)$ white balls ($i=0,1,2, \ldots, 10$). Let A denote the event that the three balls drawn at random from the bag are black. We have,
$P\left(E_{i}\right)=\frac{1}{11}(i=0,1,2, \ldots, 10)$
$P\left(A / E_{i}\right)=0$ for $i=0,1,2$ and $P\left(A / E_{i}\right)=i C_{3} /{ }^{10} C_{3}$ for $i \geq 3$
$\Rightarrow P(A)=\frac{1}{11} \times \frac{1}{{ }^{10} C_{3}}\left[{ }^{3} C_{3}+{ }^{4} C_{3}+\ldots+{ }^{10} C_{3}\right]$
But ${ }^{3} C_{3}+{ }^{4} C_{3}+{ }^{5} C_{3}+\ldots+{ }^{10} C_{3}={ }^{4} C_{4}+{ }^{4} C_{3}+{ }^{5} C_{3}+\ldots+{ }^{10} C_{3}$
$={ }^{5} C_{4}+{ }^{5} C_{3}+{ }^{6} C_{3}+\ldots+{ }^{10} C_{3}$
!
$={ }^{11} C_{4}$
$\Rightarrow p(A)=\frac{1}{11} \times \frac{1}{{ }^{10} C_{3}} \times{ }^{11} C_{4}$
$=\frac{\frac{11 \times 10 \times 9 \times 8}{4!}}{11 \times \frac{10 \times 9 \times 8}{3!}}=\frac{1}{4}$
$\therefore P\left(\frac{E_{9}}{A}\right)=\frac{P\left(E_{9}\right) P\left(A / E_{9}\right)}{P(A)}$
$=\frac{\frac{1}{11} \times \frac{{ }^{9} C_{3}}{{ }^{10} C_{3}}}{\frac{1}{4}}$
$=\frac{14}{55}$
17
(b)

Let $P(m), P(p), P(c)$ be the probability of selecting a book of maths, physics and chemistry, respectively, clearly,
$P(m)=P(p)=P(c)=\frac{1}{3}$
Again let $P\left(s_{1}\right)$ and $P\left(s_{2}\right)$ be the probability that he solves the first as well as second problem,
respectively. Then,
$P\left(s_{1}\right)=P(m) \times p\left(\frac{s_{1}}{m}\right)+p(p) \times p\left(\frac{s_{1}}{p}\right)+P(c) \times P\left(\frac{s_{1}}{c}\right)$
$\Rightarrow P\left(s_{1}\right)=\frac{1}{3} \times \frac{1}{2}+\frac{1}{3} \times \frac{3}{5}+\frac{1}{3} \times \frac{4}{5}=\frac{19}{30}$
Similarly,
$P\left(S_{2}\right)=\frac{1}{3}\left(\frac{1}{2}\right)^{2}+\frac{1}{3} \times\left(\frac{3}{5}\right)^{2}+\frac{1}{3} \times\left(\frac{4}{5}\right)^{2}=\frac{125}{300}$
$\Rightarrow P\left(\frac{S_{2}}{S_{1}}\right)=\frac{\frac{125}{300}}{\frac{19}{30}}=\frac{25}{38}$
18 (b)
Consider the following events:
A : getting a card with mark I in first draw
B :getting card with mark I in second draw
C : getting a card with mark T in this draw
Then, the required probability is
$P(A \cap B \cap C)=P(A) P(B / A) P(C / A \cap B)$
$=\frac{10}{20} \times \frac{9}{19} \times \frac{10}{18}=\frac{5}{38}$
19
(d)

We have,
$x+\frac{100}{x}>50$
$\Rightarrow x^{2}+100>50 x$
$\Rightarrow(x-25)^{2}>525$
$\Rightarrow x-25<\sqrt{525}$ or $x-25>\sqrt{525}$
$\Rightarrow x<25-\sqrt{525}$ or $25+\sqrt{525}$
As x is a positive integer and $\sqrt{525}=22.91$, we must have $x \leq 2$ or $x \geq 48$. Thus, the favourable number of cases is $2+53=55$. Hence, the required probability is $55 / 100=11 / 20$
20 (c)

The required probability is
$\frac{{ }^{3} C_{1}{ }^{3} C_{2}}{{ }^{6} C_{3}} \frac{{ }^{2} C_{1}{ }^{1} C_{1}{ }^{3} C_{1}}{{ }^{6} C_{3}}+\frac{{ }^{3} C_{2}{ }^{3} C_{1}}{{ }^{6} C_{3}} \frac{{ }^{1} C_{1}{ }^{2} C_{1}{ }^{3} C_{1}}{{ }^{6} C_{3}}$
$=2 \frac{9}{20} \times \frac{6}{20}$
$=\frac{27}{100}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | A | A | B | D | C | D | B | A | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | D | B | C | B | A | B | B | D | C |
| | | | | | | | | | | |

