CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 3

Topic :- PROBABILITY

1. Three integers are chosen at random from the set of first 20 natural numbers. The chance that their product is a multiple of 3 is
a) $194 / 285$
b) $1 / 57$
c) $13 / 19$
d) $3 / 4$
2. A purse contains 2 six-sided dice. One is a normal fair die, while the other has two 1 's , and two 5 's. A die is picked up and rolled. Because of some secret magnetic attraction of the unfair die, there is 75% chance of picking the unfair die and a 25% chance of picking a fair die. The die is rolled and shows up the face 3.The probability that a fair die was picked up is
a) $1 / 7$
b) $1 / 4$
c) $1 / 6$
d) $1 / 24$
3. A problem in mathematics is given to three students A, B, C and their respective probability of solving the problem is $1 / 2,1 / 3$ and $1 / 4$. Probability that the problem is solved is
a) $3 / 4$
b) $1 / 2$
c) $2 / 3$
d) $1 / 3$
4. A fair die is thrown 20 times. The probability that on the $10^{\text {th }}$ throw, the fourth six appears is
a) ${ }^{20} C_{10} \times 5^{6} / 6^{20}$
b) $120 \times 5^{7} / 6^{10}$
c) $84 \times 5^{6} / 6^{10}$
d) None of these
5. Mr. A lives at origin on the Cartesian plane and has his office at $(4,5)$. His friend lives at $(2,3)$ on the same plane. Mr. A can go to his office travelling one black at a time either in the $+y$ or $+x$ direction. If all possible paths are equally likely then the probability that Mr. A passed his friends house is (shortest path for any event must be considered)
a) $1 / 2$
b) $10 / 21$
c) $1 / 4$
d) $11 / 21$
6. There are two urns A and B. Urn A contains 5 red, 3 blue and 2 white balls, urn B contains 4 red, 3 blue and 3 white balls. An urn is choosen at random and a ball is drawn. Probability that the ball drawn is red is
a) $9 / 10$
b) $1 / 2$
c) $11 / 20$
d) $9 / 20$
7. In a game a coin is tossed $2 n+m$ times and a player wins if he does not get any two consecutive outcomes same for atleast $2 n$ times in a row. The probability that player wins the game is
a) $\frac{m+2}{2^{2 n}+1}$
b) $\frac{2 n+2}{2^{2 n}}$
c) $\frac{2 n+2}{2^{2 n+1}}$
d) $\frac{m+2}{2^{2 n}}$
8. Let A and B be events. Suppose $P(A)=0.4, P(B)=p$ and $P(P \cup B)=0.7$. The value of p for which A and B are independent is
a) $1 / 3$
b) $1 / 4$
c) $1 / 2$
d) $1 / 5$
9. If a and b are chosen randomly from the set consisting of numbers $1,2,3,4,5,6$ with replacement. Then the probability that $\lim _{x \rightarrow 0}\left[\left(a^{x}+b^{x}\right) / 2\right]^{2 / x}=6$ is
a) $1 / 3$
b) $1 / 4$
c) $1 / 9$
d) $2 / 9$
10. Four die are thrown simultaneously. The probability that 4 and 3 appear on two of the die given that 5 and 6 have appeared on other two die is
a) $1 / 6$
b) $1 / 36$
c) $12 / 151$
d) None of these
11. Cards are drawn one by one without replacement from a pack of 52 cards. The probability that 10 cards will precede the first ace is
a) $241 / 1456$
b) $164 / 4165$
c) $451 / 884$
d) None of these
12. Forty teams play a tournament. Each team plays every other team just once. Each game result in a win for one team. If each team has a 50% chance of winning each game, the probability that at the end of the tournament, every team has won a different number of games is
a) $1 / 780$
b) $40!/ 2^{780}$
c) $40!/ 3^{780}$
d) None of these
13. $2 n$ boys are randomally divided into two subgroups containing n boys each. The probability that the two tallest boys are in different groups is
a) $n /(2 n-1)$
b) $(n-1) /(2 n-1)$
c) $(n-1) / 4 n^{2}$
d) None of these
14. The probability of solving a question by three students are $1 / 2,1 / 4,1 / 6$ respectively. Probability of question being solved will be
a) $33 / 48$
b) $35 / 48$
c) $31 / 48$
d) $37 / 48$
15. A fair coin is tossed 10 times. Then the probability that two heads do not occurs consecutively is
a) $7 / 64$
b) $1 / 8$
c) $9 / 16$
d) $9 / 64$
16. If A and B each toss three coins. The probability that both get the same number of heads is
a) $1 / 9$
b) $3 / 16$
c) $5 / 16$
d) $3 / 8$
17. A draws a card from a pack of n cards marked $1,2, \ldots n$. The card is replaced in the pack and B draws a card. Then the probability that A draws a higher card than B is
a) $(n+1) 2 n$
b) $1 / 2$
c) $(n-1) / 2 n$
d) None of these
18. All the jacks, queens, kings and aces of a regular 52 cards deck are taken out. The 16 cards are thoroughly shuffled and my opponent, a person who always tells the truth, simultaneously draws two cards at random and says, 'I hold at least one ace'. The probability that he holds two aces is
a) $2 / 8$
b) $4 / 9$
c) $2 / 3$
d) $1 / 9$
19. The probability of winning a race by three persons A, B and C are $1 / 2,1 / 4$, and $1 / 4$, respectively. They run two races. The probability of A winning the second race when B wins the first race is
a) $1 / 3$
b) $1 / 2$
c) $1 / 4$
d) $2 / 3$
20. A composite number is selected at random from the first 30 natural numbers and it is divided by 5 . The probability that there will be a remainder is
a) $14 / 19$
b) $5 / 19$
c) $5 / 6$
d) $7 / 15$

