CLASS : XIIth
DATE :

SOLUTIONS

SUBJECT : MATHS

DPP NO. :3

Topic :-PROBABILITY

1

(a)

The total number of ways of selecting 3 integers from 20 natural numbers is ${ }^{20} C_{3}=1140$. Their product is a multiple of 3 means at least one number is divisible by 3 . The number which are divisible by 3 are $3,6,9,12,15,18$ and the number of ways of selecting at least one of them is ${ }^{6} C_{1} \times$ ${ }^{14} C_{2}+{ }^{6} C_{2} \times{ }^{14} C_{1}+{ }^{6} C_{3}=776$. Hence, the required probability is $776 / 1140=194 / 285$

2 (a)

Let N be the event of picking up a normal die: $P(N)=1 / 4$. Let M be the event of picking up a magnetic die : $P(M)=3 / 4$. Let A be the event that die shows up 3
$\therefore P(A)=P(A \cap N)+P(A \cap M)$
$=P(N) P(A / N)+P(M) P(A / M)$
$=\frac{1}{4} \times \frac{1}{6}+\frac{3}{4} \times \frac{7}{24}$
$P(N / A)=\frac{P(N \cap A)}{P(A)}=\frac{(1 / 4)(1 / 6)}{7 / 24}=\frac{1}{7}$
3 (a)
$P(A)=\frac{1}{2}, P(B)=\frac{1}{3}, P(C)=\frac{1}{4}$
$\therefore P(\bar{A})=1-\frac{1}{2}-\frac{1}{2}, P(\bar{B})=1-\frac{1}{3}=\frac{2}{3}$
$P(\bar{C})=1-\frac{1}{4}=\frac{3}{4}$
Therefore, the required probability is

$$
\begin{aligned}
& 1-P(\bar{A}) P(\bar{B}) P(\bar{C})=1-\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \\
& =1-\frac{1}{4}=\frac{3}{4}
\end{aligned}
$$

4
(c)

In the first 9 throws, we should have three sixes and six non-sixes; and a six in the $10^{\text {th }}$ throw, and thereafter it does not matter whatever face appears. So, the required probability is
${ }^{9} C_{3}\left(\frac{1}{6}\right)^{3} \times\left(\frac{5}{6}\right)^{6}=\frac{1}{6} \times 1 \times 1 \times 1 \times \ldots \times 1$
$=\frac{84 \times 5^{6}}{6^{10}}$
5
(b)
$n(S)=\frac{9!}{4!5!}=126$
$n(A)=0$ to F and F to P
$=\frac{5!}{2!\times 3!} \times \frac{4}{2!\times 2!}=60$

5				$0 P(4,5)$
4				

$\Rightarrow P(A)=\frac{60}{126}=\frac{10}{21}$

6
 (d)

Let A and B, respectively, be the events that urn A and urn B are selected. Let R be the event that the selected ball is red. Since the urn is chosen at random. Therefore,
$P(A)=P(B)=\frac{1}{2}$
And $P(R)=P(A) P(R / A)+P(B) P(R / B)$
$=\frac{1}{2} \times \frac{5}{10}+\frac{1}{2} \times \frac{4}{10}$
$=\frac{9}{20}$
7
(d)

Player should get ($H T, H T, H T, \ldots$) or $(T H, T H, \ldots)$ at least $2 n$ times. If the sequence starts from first place, then the probability is $1 / 2^{2 n}$ and if starts from any other place, then the probability is $1 / 2$ $2^{2 n+1}$. Hence, required probability is
$2\left(\frac{1}{2^{2 n}}+\frac{m}{2^{2 n+1}}\right)=\frac{m+2}{2^{2 n}}$
8
(c)
$P(A \cup B)=P(A)+P(B)-P(A) \times P(B)$
$\Rightarrow 0.7=0.4+p-0.4 p$
$\therefore 0.6 p=0.3 \Rightarrow p=\frac{1}{2}$
9
(c)

Given limit,
$\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}}{2}\right)^{\frac{2}{x}}$
$=\lim _{x \rightarrow 0}\left(1-\frac{a^{x}+b^{x}-2}{2}\right)^{\frac{2}{a^{x}+b^{x}-2} \lim _{x \rightarrow 0}\left(\frac{a^{x}-1+b^{x}-1}{x}\right)}$
$=e^{\log a b}=a b=6$
Total number of possible ways in which a, b can take values is $6 \times 6=36$. Total possible ways are $(1,6),(6,1),(2,3),(3,2)$. The total number of possible ways is 4 . Hence, the 4 required probability is $4 / 36=1 / 9$
10 (c)
Given that 5 and 6 have appeared on two of the dice, the sample space reduces to $6^{4}-2 \times 5^{4}+4^{4}$ (inclusion-exclusion principle). Also, the number of favourable cases are $4!=24$. So, the required probability is $24 / 302=12 / 151$
11 (b)
Let event A be drawing 9 cards which are not ace and B be drawing an ace card. Therefore, the required probability is
$P(A \cap B)=P(A) \times P(B)$
Now, there are four aces and 48 other cards. Hence,
$P(A)=\frac{{ }^{48} C_{9}}{{ }^{52} C_{9}}$
After having drawn 9 non-ace cards, the $10^{\text {th }}$ card must be ace. Hence,
$P(B)=\frac{{ }^{4} C_{1}}{{ }^{42} C_{1}}=\frac{4}{42}$
Hence,
$P(A \cap B)=\frac{{ }^{48} C_{9}}{{ }^{52} C_{9}} \frac{4}{42}$
12 (b)
Team totals must be $0,1,2, \ldots, 39$. Let the teams be $T_{1}, T_{2}, \ldots, T_{40}$, so that T_{1} loses to T_{1} for $i<j$. In other words, this order uniquely determines the result of every game. There are 40 ! Such orders and 780 games, so 2^{780} possible outcomes for the games. Hence, the probability is $40!/ 2^{780}$
13 (a)
The total number of ways in which $2 n$ boys can be divided into two equal groups is
$\frac{(2 n)!}{(n!)^{2} 2!}$
Now, the number of ways in which $2 n-2$ boys other than the two tallest boys can be divided into equal group is

$$
\frac{(2 n-2)!}{(n-1!)^{2} 2!}
$$

Two tallest boys can be put in different groups in ${ }^{2} C_{1}$ ways. Hence, the required probability is $\frac{2 \frac{(2 n-2)!}{((n-1)!)^{2} 2!}}{\frac{(2 n)!}{(n!)^{2} 2!}}=\frac{n}{2 n-1}$

1. This question can also be solved by one student
2. This question can be solved by two students simultaneously
3. This question can be solved by three students all together
$P(A)=\frac{1}{2}, P(B)=\frac{1}{4}, P(C)=\frac{1}{6}$
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-[P(A) P(B)+P(B) P(C)+P(C) P(A)]+[P(A) P(B) P(C)]$
$=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}-\left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2}\right]+\left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{6}\right]$

$$
=\frac{33}{48}
$$

Alternative solution:

We have,
$P\left(\bar{A}=\frac{1}{2}, P(\bar{B})=\frac{3}{4}, P(\bar{C})=\frac{5}{6}\right.$
Then the probability that the problem is not solved is
$P(\bar{A}) P(\bar{B}) P(\bar{C})=\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)=\frac{5}{16}$
Hence probability that problem is solved is $1-5 / 16=11 / 16$

15 (d)

Let p_{1} denote the probability that out of 10 tosses, head occurs i times and no two heads occurs consecutively. It is clear that $i>5$
For $i=0$, i.e., no head, $p_{0}=1 / 2^{10}$
For $i=1$, i.e., one head $p_{1}={ }^{10} C_{1}(1 / 2)^{1}(1 / 2)^{9}=10 / 2^{10}$
Now for $i=2$, we have 2 heads and 8 tails. Then, we have 9 possible places for heads. For example, see the constructive:
xTxTxTxTxTxTxTxTxTx
Here x represents possible places for heads
$\therefore p_{2}={ }^{9} C_{2}\left(\frac{1}{2}\right)^{2}(1 / 2)^{8}=36 / 2^{10}$
Similarly,
$p_{3}={ }^{8} C_{3} / 2^{10}=56 / 2^{10}$
$p_{4}={ }^{7} C_{2} / 2^{10}=35 / 2^{10}$
$p_{5}={ }^{6} C_{5} / 2^{10}=6 / 2^{10}$
$\therefore p=p_{0}+p_{1}+p_{3}+p_{4}+p_{5}$
$=\frac{1+10+36+56+35+6}{2^{10}}=\frac{144}{2^{10}}=\frac{9}{64}$
16
(c)

The probability that A gets r heads in three tosses of a coin is
$P(X=r)={ }^{3} C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{3-r}={ }^{3} C_{r}\left(\frac{1}{2}\right)^{3}$
The probability that A and B both get r heads in three tosses of a coin is
${ }^{3} C_{r}\left(\frac{1}{2}\right)^{3}{ }^{3} C_{r}\left(\frac{1}{2}\right)^{3}=\left({ }^{3} C_{r}\right)^{2}\left(\frac{1}{2}\right)^{6}$
Hence, the required probability is
$\sum_{r=0}^{3}\left({ }^{3} C_{r}\right)^{2}\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{2}\right)^{6}=\{1+9+9+1\}=\frac{20}{64}=\frac{5}{16}$
17
(c)

If A draws card higher than B, then number of favourable cases is $(n-1)+(n-2)+\ldots+3+2+1$ (as when B draws card from 2 to n and so on). Therefore, the required probability is
$\frac{\frac{n(n-1)}{2}}{n^{2}}=\frac{n-1}{2 n}$
18
(d)
A : exactly one ace
B : both aces
$E: A \cup B$
$P(B / A \cup B))=\frac{{ }^{4} C_{2}}{{ }^{4} C_{1}{ }^{12} C_{1}+{ }^{4} C_{2}}=\frac{6}{54}=\frac{1}{9}$

19 (b)

The probability of winning of A the second race is $1 / 2$ (since both events are independent)
20
(a)

The number of composite numbers in 1 to 30 is $n(S)=19$
The number of composite number when divided by 5 leaves a remainder is $(E)=14$. Therefore, the required probability is $14 / 19$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | A | A | C | B | D | D | C | C | C |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | B | A | A | D | C | C | D | B | A |
| | | | | | | | | | | |

