CLASS : XIIth
DATE :

SOLUTIONS

SUBJECT : MATHS
DPP NO. :2

Topic :-PROBABILITY

1
(b)

Total number of ways of distribution is 4^{5}
$\therefore n(S)=4^{5}$
Total number of ways of distribution so that each child gets at least one game is
$4^{5}-{ }^{4} C_{1} 3^{5}+{ }^{4} C_{2} 2^{5}-{ }^{4} C_{3}=1024-4 \times 243+6 \times 32-4=240$
$\therefore n(E)=240$
Therefore, the required probability is
$\frac{n(E)}{n(S)}=\frac{240}{4^{5}}=\frac{15}{64}$
2
(c)

We know that the number of subsets of a set containing n elements is 2^{n}. Therefore, the number of ways of choosing P and Q is

$$
2^{n} C_{1} \times{ }^{2^{n}} C_{1}=2^{n} \times 2^{n}=4^{n}
$$

Out of n elements, m elements are chosen and then from the remaining $n-m$ elements either an element belongs to P or Q. But not both P and Q. Suppose P contains r elements from the remaining $n-m$ elements. Then, Q may contain any number of elements from the remaining $(n-m)-r$ elemts. Therefore, P and Q can be chosen in ${ }^{n-m} C_{r} 2^{(n-m)-r}$ ways
But r can vary from 0 to $n-m$. So, in general the number of ways in which P and Q can be chosen is
$\left(\sum_{r=0}^{n-m}{ }^{n-m} C_{r} 2^{(n-m)-r}\right){ }^{n} C_{m}=(1+2)^{n-m n} C_{m}={ }^{n} C_{m} 3^{n-m}$
Hence, the required probability is ${ }^{n} C_{m} 3^{n-m} / 4^{n}$

3 (a)

The total number of ways of making the second draw is ${ }^{10} C_{5}$
The number of draw of 5 balls containing 2 balls common with first draw of 6 balls is ${ }^{6} C_{2}{ }^{4} C_{3}$.
Therefore, the probability is
$\frac{{ }^{6} C_{2}{ }^{4} C_{3}}{{ }^{10} C_{5}}=\frac{5}{21}$
4 (c)
The total number of digits in any number at the unit's place is 10
$\therefore n(S)=10$

If the last digit in product is $1,3,5$ or 7 , then it is necessary that the last digit in each number must be $1,3,5$ or 7
$\therefore n(A)=4$
$\therefore P(A)=\frac{4}{10}=\frac{2}{5}$
Hence, the required probability is $(2 / 5)^{4}=16 / 625$
5
$P(A)=\frac{2}{5}$
For independent events,
$P(A \cap B)=P(A) P(B)$
$\Rightarrow P(A \cap B) \leq \frac{2}{5}$
$\Rightarrow P(A \cap B)=\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}$
[Maximum 4 outcomes may be in $P(A \cap B)$]

1. When $P(A \cap B)=\frac{1}{10}$
$\Rightarrow P(A) \cdot P(B)=\frac{1}{10}$
$\Rightarrow P(B)=\frac{1}{10} \times \frac{5}{2}=\frac{1}{4}$ not possible
2. When $P(A \cap B)=\frac{2}{10} \Rightarrow \frac{2}{5} \times P(B)=\frac{2}{10}$
$\Rightarrow P(B)=\frac{5}{10}$ outcomes of $B=5$
3. When $P(A \cap B)=\frac{3}{10}$
$\Rightarrow P(A) P(B)=\frac{3}{10}$
$\Rightarrow \frac{2}{5} \times P(B)=\frac{3}{10}$
$P(B)=\frac{3}{4}$, not possible
4. When $P(A \cap B)=\frac{4}{10}$
$\Rightarrow P(A) \cdot P(A)=\frac{4}{10}$
$\Rightarrow P(B)=1$, outcomes of $B=10$

6
 (d)

A person can have his/her birthday on any one of the seven days of the week. So 5 persons can have their birthdays in 7^{5} ways. Out of 5 , three persons can have their birthday on days other than Sunday in 6^{3} ways and other 2 on Sundays. Hence, the required probability is
$\frac{{ }^{5} C_{2} \times 6^{3}}{7^{5}}=\frac{10 \times 6^{3}}{7^{5}}$
(Note that 2 persons can be selected out of 5 in ${ }^{5} C_{2}$ ways)
7
(a)
$P\left(B_{1}\right)=\frac{{ }^{6} C_{1}}{{ }^{10} C_{1}}=\frac{6}{10}=\frac{3}{5}$

$$
P\left(B_{2} / B_{1}\right)=\frac{5}{9}\left(B_{2}=\text { black }\right) \therefore P\left(B_{1} \cap B_{2}\right)=P\left(B_{1}\right) P\left(B_{2} / B_{1}\right)=\frac{3}{5} \times \frac{5}{9}=\frac{1}{3}
$$

78
(d)

Three-digit numbers are $100,101, \ldots 99$. Total number of such numbers is 900 . The three-digit numbers (which have all same digits) are $111,222,333, \ldots, 999$. Favourable number of cases is 9 . Therefore, the required probability is $9 / 900=1 / 100$

79

(b)

Let E be the event of getting 1 on a die
$\Rightarrow P(E)=\frac{1}{6}$ and $P(\bar{E})=\frac{5}{6}$
$\therefore P$ (first time 1 occurs at the even throw)
$=t_{2}$ or t_{4} or t_{6} or $t_{8} \ldots$ and so on.
$=\left\{P\left(\bar{E}_{1}\right) \cdot P\left(E_{2}\right)\right\}+\left\{P\left(\bar{E}_{1}\right) P\left(\bar{E}_{2}\right) P\left(\overline{E_{3}}\right) P\left(E_{4}\right)\right\}+\ldots \infty$
$=\left(\frac{5}{6} \cdot \frac{1}{6}\right)+\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)+\ldots \infty$
$=\frac{\frac{5}{36}}{1-\frac{25}{36}}=\frac{5}{11}$
10 (b)
$P(S \cap F)=0.006$, where S is the event that the motor cycle is stolen and F is the event that the motor cycle is found. Therefore,
$P(S)=0.0015$
$P(F / S)=\frac{P(F \cap S)}{P(S)}=\frac{6 \times 10^{-4}}{15 \times 10^{-4}}=\frac{2}{5}$

11
 (d)

The total number of ways of choosing 11 players out of 15 is ${ }^{15} C_{11}$. A team of 11 players containing at least 3 bowlers can be chosen in the following mutually exclusive ways:

1. Three bowlers out of 5 bo 0 wlers and 8 other players out of the remaining 10 players
2. Four bowlers out of 5 bowlers and 7 other players out of the remaining 10 players
3. Five bowlers out of 5 bowlers and 6 other players out of the remaining 10 players

So, required probability is
$P(I)+P(I I)+P(I I I)=\frac{{ }^{5} C_{3} \times{ }^{10} C_{8}}{{ }^{15} C_{11}}+\frac{{ }^{5} C_{4} \times{ }^{10} C_{7}}{{ }^{15} C_{11}}+\frac{{ }^{5} C_{5} \times{ }^{10} C_{6}}{{ }^{15} C_{11}}$
$=\frac{1260}{1365}=\frac{12}{13}$
12 (a)
Let the number selected by $x y$. Then
$x+y=9,0<x, y \leq 9$
And $x y=0 \Rightarrow x=0, y=9$
Or $y=0, x=9$
$P\left(x_{1}=9 / x_{2}=0\right)=\frac{P\left(x_{1}=9 \cap x_{2}=0\right)}{P\left(x_{2}=0\right)}$
Now, $P\left(x_{2}=0\right)=\frac{19}{100}$
And $P\left(x_{1}=9 \cap x_{2}=0\right)=\frac{2}{100}$
$\Rightarrow P\left(x_{1}=9 / x_{2}=0\right)=\frac{2 / 100}{19 / 100}=\frac{2}{19}$

13 (d)

Since a, b, c are in A.P>, therefore, $2 b=a+c$. The possible cases are tabulated as fallows

b	a	c	Num
1	1	1	1
2	2	2	1
2	1	3	6
3	3	3	1
3	1	5	6
3	2	4	6

Total number of ways is 21 . So, required probability is $21 / 216=7 / 72$
14
(b)

We define the following events:
A_{1} : Selecting a pair of consecutive letters from the word LONDON
A_{2} : Selecting a pair of consecutive letters from the word CLIFTON
E : Selecting a pair of letters ' ON '
Then, $P\left(A_{1} E\right)=2 / 5$ as there are 5 pairs of consecutive letters out of which 2 are ON and $P\left(A_{2} E\right)$ $=1 / 6$ as there are 6 pairs of consecutive letters of which 1 is ON. Therefore, the required probability is
$P\left(\frac{A_{1}}{E}\right)=\frac{P\left(A_{1} \cap E\right)}{P\left(A_{1} \cap E\right)+P\left(A_{2} \cap E\right)}=\frac{\frac{2}{5}}{\frac{2}{5}+\frac{1}{6}}=\frac{12}{17}$
(c)

The sum is 12 in first three throws if they are $(1,5,6)$ in any order or $(2,4,6)$ in any order or $(3,4$, 5) in any order. Therefore, the required probability is
$\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3!+\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3!+\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3!=\frac{3}{20}$
(because after throwing 1 , in the next throw 1 cannot come, etc.)

16
 (d)

The total number of ways in which papers of 4 students can be checked by seven teachers is 7^{4}. The number of ways of choosing two teachers out of 7 is ${ }^{7} C_{2}$. The number of ways in which they can check four papers is 2^{4}. But this includes two ways in which all the papers will be checked by a single teacher. Therefore, the number of ways in which 4 papers can be checked by exactly two teachers is $2^{4}-2=14$. Therefore, the number of favourable ways is $\left({ }^{7} C_{2}\right)(14)=(21)(14)$. Thus, the required probability is $(21)(14) / 7^{4}=6 / 49$
17
(c)

A: car met with an accident
B_{1} : driver was alcoholic, $P\left(B_{1}\right)=1 / 5$
B_{2} : driver was sober, $P\left(B_{2}\right)=4 / 5$
$P\left(A / B_{1}\right)=0.001 ; P\left(A / B_{2}\right)=0.0001$
$P\left(\frac{B_{1}}{A}\right)=\frac{(0.2)(0.001)}{(0.2)(0.001)+(0.8)(0.0001)}=5 / 7$
18 (c)
Out of 5 horses, only one is the wining horse. The probability that Mr. A selected that losing horse is $4 / 5 \times 3 / 4$. Therefore, the required probability is
$1-\frac{4}{5} \times \frac{3}{4}=1-\frac{3}{5}=\frac{2}{5}$
19
(c)

Suppose, there exist three rational points or more on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$.
Therefore, if $\left(x_{1}, y_{1}\right),\left(x_{2}, x_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ be those three points, then
$x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c=0$
$x_{2}^{2}+y_{2}^{2}+2 g x_{2}+2 f y_{1}+c=0$
$x_{3}^{2}+y_{3}^{2}+2 g x_{3}+2 f y_{3}+c=0$
Solving Eqs. (1), (2) and (3), we will get g, f, c as rational. Thus, centre of the circle $(-g .-f)$ is a rational point. Therefore, both the coordinates of the centre are rational numbers. Obviously, the possible values of p are 1,2 . Similarly, the possible values of q are 1,2 . Thus fro this case (p, q) may be chosen in 2×2, i.e., 4 ways. Now, (p, q) can be, without restriction, chosen in 6×6, i.e., 36 ways Hence, the probability that at the most two rational points exist on the circle is

$$
(36-4) / 36=32 / 36=8 / 9
$$

20 (a)

The required probability is
$P(A)=\frac{1}{3} \frac{6}{a^{2}-4 a+10}$
$(P(A))_{\text {max }}=\frac{1}{3} \times \frac{6}{6}=\frac{1}{3}$

