

CLASS: XIIth DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.:1

Topic:-PROBABILITY

1 **(b)**

The total number of ways in which n persons can sit at a round table is (n-1)!. So, total number of cases is (n-1)!

Let A and B be two specified persons. Considering these two as one person, the total number of ways in which n-1 persons, n-2 other persons and one AB can sit at a round table is (n-2)!. So, favourable number of cases is 2!(n-2)! Thus, the required probability is

$$p = \frac{2!(n-2)!}{(n-1)!} = \frac{2}{n-1}$$

Hence, the required odds are (1-p):p or (n-3):2

2 **(b**)

Here p = 19/20, q = 1/20, n = 5, r = 5. The required probability is

$${}^{5}C_{5}\left(\frac{19}{20}\right)^{5}\left(\frac{1}{20}\right)^{6} = \left(\frac{19}{20}\right)^{5}$$

3 **(a)**

Let the number of red and blue balls be r and b, respectively. Then, the probability of drawing two red balls is

$$p_1 = \frac{{}^rC_2}{{}^{r+b}C_2} = \frac{r(r-1)}{(r+b)(r+b-1)}$$

The probability of drawing two blue balls is

$$p_2 = \frac{{}^bC_2}{{}^{r+b}C_2} = \frac{b(b-1)}{(r+b)(r+b-1)}$$

The probability of drawing one red and one blue ball is

$$p_3 = \frac{{}^rC_1{}^bC_1}{{}^{r+b}C_2} = \frac{2br}{(r+b)(r+b-1)}$$

By hypothesis, $p_1 = 5p_2$ and $p_3 = 6p_2$

$$r(r-1) = 5b(b-1)$$
 and $2br = 6b(b-1)$

$$\Rightarrow r = 6, b = 3$$

4 **(d)**

Consider two events as follows:

 A_1 : getting number i on first die

 B_1 : getting a number more than *i* on second die

The required probability is

$$P(A_1 \cap B_1) + P(A_2 \cap B_2) + P(A_3 \cap B_3) + P(A_4 \cap B_4) + P(A_5 \cap B_5) = \sum_{i=1}^{5} P(A_i \cap B_i)$$
$$= \sum_{i=1}^{5} P(A_i) P(B_i)$$

[$: A_i, B_i$ are independent]

$$= \frac{1}{6} [P(B_1) + P(B_2) + \dots + P(B_5)]$$

$$= \frac{1}{6} \left(\frac{5}{6} + \frac{4}{6} + \frac{3}{6} + \frac{2}{6} + \frac{1}{6} \right) = \frac{5}{12}$$
5 **(b)**

Let,

$$P(S) = P(1 \text{ or } 2) = 1/3$$

$$P(F) = P(3 \text{ or } 4 \text{ or } 5 \text{ or } 6) = 2/3$$

P(A wins) = P[(S S or S F S S or S F S S F S S or...)

Or (*F S S* or *F S F S S* or...)]

 $P(A \text{ winning}) = \frac{5}{21}, P(B \text{ winning}) = \frac{16}{21}$

Let $E_1 = 1, 4, 7, ... (n \text{ each})$

 $E_2 = 2, 5, 8, ...$ (*n* each)

$$E_3 = 3, 6, 9, \dots (n \text{ each})$$

x and y belong to (E_1,E_2) , (E_2,E_1) or (E_3,E_3) . So, the required probability is

$$\frac{n^2 + {}^nC_2}{{}^{3n}C_2} = \frac{1}{3}$$

Let *A* be the event that 11 is picked and *B* be the event that sum is even. The number of ways of selecting 11 along with one more-odd number is $n(A \cap B) = {}^{7}C_{1}$

The number of ways of selecting either two even numbers or selecting two odd numbers is n(B)

$$= 1 + {}^{8}C_{2}$$

$$\therefore P(A/B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{7}{29} = 0.24$$

8 **(c)**

18 draws are required for 2 aces means in the first 17 draws, there is one ace and 16 other cards and 18^{th} draw produces an ace. So, the required probability is

$$\frac{{}^{48}C_{16} \times {}^{4}C!}{{}^{52}C_{17}} \times \frac{3}{35} = \frac{561}{15925}$$

9 **(c)**

Given,

$$7a - 9b = 0 \Rightarrow b = \frac{7}{9}a$$

Hence, number of pairs (a, b) can be (9, 7); (18, 14); (27, 21); (36, 28). Hence, the required probability is $4/^{39}C_2 = 4/741$

10 **(b)**

The total number of cases is $11!/2! \times 2!$ The number of favourable cases is $11!/(2! \times 2!) - 9!$ Therefore, required probability is

$$1 - \frac{9! \times 4}{11!} = \frac{53}{55}$$

11 **(a**)

The divisibility of the product of four numbers depends upon the value of the last digit of each number. The last digit of a number can be any one of the 10 digits 0,1, 2, ...9. So, the total number of ways of selecting last digits of four numbers is $10 \times 10 \times 10 \times 10 = 10^4$. If the product of the 4 numbers is not divisible by 5 or 10, then the number of choices for the last digit of each number is 8 (excluding 0 or 5). So, favourable number of ways is 8^4 . Therefore, the probability that the product is not divisible by 5 or 10 is $(8/10)^4$. Hence, the required probability is $1 - (8/10)^4 = 369/625$

12 **(c)**

Let E = event when each American man is seated adjacent to his wife

and A = event when Indian man is seated adjacent to his wife.

Now,
$$n(A \cap E) = (4!) \times (2!)^5$$

Even when each American man is seated adjacent to his wife.

Again, $n(E) = (5!) \times (2!)^4$

$$\therefore P\left(\frac{A}{E}\right) = \frac{n(A \cap E)}{n(E)}$$

$$=\frac{(4!)\times(2!)^3}{(5!)\times(2!)^4}=\frac{2}{5}$$

13 **(c)**

Let the probability that a man aged x dies in a year p. Thus the probability that a man aged x does not die in a year = 1 - p. The probability that all n men aged xdo not die in a year is $(1 - p)^n$. Therefore, the probability that at least one man dies in a year is $1 - (1 - p)^n$. The probability that out of n men, A_1 dies first is 1/n. Since this event is independent of the event that at least one man

dies in a year, hence, the probability that A_1 dies in the year and he is first one to die is 1/n[1-

$$(1-p)^n$$

14 (b)

Let us consider the following events

A: card shows up black

 B_1 : card with both sides black

 B_2 : card with both sides white

 B_1 : card with one side white and one black

$$P(B_1) = \frac{2}{10}, P(B_2) = \frac{3}{10}, P(B_3) = \frac{5}{10}$$

$$P(A/B_1) = 1$$
, $P(A/B_2) = 0$ $P(A/B_3) = \frac{1}{2}$

$$P(B_1/A) = \frac{\frac{2}{10} \times 1}{\frac{2}{10} \times 1 + \frac{3}{10} \times (0) + \frac{5}{10} \times \frac{1}{2}} = \frac{4}{4+5} = \frac{4}{9}$$

Possibilities of getting 9 are (5, 4), (4, 5), (6, 3), (3, 6)

$$\therefore p = \frac{4}{36} = \frac{1}{9} \text{ and } q = 1 - \frac{1}{9} = \frac{8}{9}$$

Therefore, the required probability is

$${}^{3}C_{2}q^{1}p^{2} = (3)\left(\frac{8}{9}\right)\left(\frac{1}{9}\right)^{2} = \frac{8}{243}$$

The number of ways of arranging *n* numbers is *n*! In each order obtained, we must now arrange the digits 1, 2, ...k as group and the n-k remaining digits. This can be done in (n-k+1)! ways. Therefore, the probability for the required event is (n - k + 1)!/n!

17

For each toss, there are four choices:

- 1. A gets head, B gets head
- 2. A gets tail, B gets head
- 3. A gets head, B gets tail
- A gets tail, B gets tail 4.

Thus, exhaustive number of ways is 4^{50} . Out of the four choices listed above, (iv) is not favourable to the required event in a toss. Therefore, favourable number of cases is 3^{50} . Hence, the required probability is $(3/4)^{50}$

18 (c) Let a_n be the number 5 of strings of H and T of length n with no two adjacent H's. Then $a_1 = 2$, $a_2 = 3$. Also,

 $a_{n+2} = a_{n+1} + a_n$ (since the string must with T or HT)

So,
$$a_3 = 5$$
, $a_4 = 8$, $a_5 = 8 + 5 = 13$

Therefore, the required probability is $13/2^5 = 13/52$

19 **(a)**

We have ratio of the ships A, B and C for arriving safely are 2:5,3:7 and 6:11, respectively.

Therefore, the probability of ship *A* for arriving safely is 2/(2+5)=2/7

Similarly, for *B* the probability is 3/(3+7)=3/10 and for *C* the probability is C=6/(6+11)=6/17 Therefore, the probability of all the ships for arriving safely is $(2/7)\times(3/10)\times(6/17)$ 18/595

20 **(a)**

Out of 9 socks, 2 can be drawn in 9C_2 ways. Therefore, the total number of cases is 9C_2 . Two socks drawn from the drawer will match if either both are brown or both are blue. Therefore, favourable number of cases is ${}^5C_2 + {}^4C_2$. Hence, the required probability is

$$\frac{{}^{5}C_{2} + {}^{4}C_{2}}{{}^{9}C_{2}} = \frac{4}{9}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	В	A	D	В	A	С	С	С	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	С	С	В	С	D	A	С	A	A

