CLASS : XIIth
DATE :

SOLUTIONS

SUBJECT : MATHS

DPP NO. :1

Topic :-PROBABILITY

1
(b)

The total number of ways in which n persons can sit at a round table is $(n-1)$!. So, total number of cases is $(n-1)$!
Let A and B be two specified persons. Considering these two as one person, the total number of ways in which $n-1$ persons, $n-2$ other persons and one $A B$ can sit at a round table is $(n-2)!$. So, favourable number of cases is $2!(n-2)$! Thus, the required probability is
$p=\frac{2!(n-2)!}{(n-1)!}=\frac{2}{n-1}$
Hence, the required odds are $(1-p): p$ or $(n-3): 2$
2 (b)
Here $p=19 / 20, q=1 / 20, n=5, r=5$. The required probability is
${ }^{5} C_{5}\left(\frac{19}{20}\right)^{5}\left(\frac{1}{20}\right)^{6}=\left(\frac{19}{20}\right)^{5}$
3
(a)

Let the number of red and blue balls be r and b, respectively. Then, the probability of drawing two red balls is
$p_{1}=\frac{{ }^{r} C_{2}}{{ }^{r+b} C_{2}}=\frac{r(r-1)}{(r+b)(r+b-1)}$
The probability of drawing two blue balls is
$p_{2}=\frac{{ }^{b} C_{2}}{{ }^{r+b} C_{2}}=\frac{b(b-1)}{(r+b)(r+b-1)}$
The probability of drawing one red and one blue ball is
$p_{3}=\frac{{ }^{r} C_{1}{ }^{b} C_{1}}{{ }^{r+b} C_{2}}=\frac{2 b r}{(r+b)(r+b-1)}$
By hypothesis, $p_{1}=5 p_{2}$ and $p_{3}=6 p_{2}$
$\therefore r(r-1)=5 b(b-1)$ and $2 b r=6 b(b-1)$
$\Rightarrow r=6, b=3$
4
(d)

Consider two events as follows:
A_{1} : getting number i on first die
B_{1} : getting a number more than i on second die The required probability is

$$
\begin{aligned}
P\left(A_{1} \cap B_{1}\right)+ & P\left(A_{2} \cap B_{2}\right)+P\left(A_{3} \cap B_{3}\right)+P\left(A_{4} \cap B_{4}\right)+P\left(A_{5} \cap B_{5}\right)=\sum_{i=1}^{5} P\left(A_{i} \cap B_{i}\right) \\
& =\sum_{i=1}^{5} P\left(A_{i}\right) P\left(B_{i}\right)
\end{aligned}
$$

[$\because A_{i}, B_{i}$ are independent]
$=\frac{1}{6}\left[P\left(B_{1}\right)+P\left(B_{2}\right)+\ldots+P\left(B_{5}\right)\right]$
$=\frac{1}{6}\left(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\right)=\frac{5}{12}$
5
(b)

Let,
$P(S)=P(1$ or 2$)=1 / 3$
$P(F)=P(3$ or 4 or 5 or 6$)=2 / 3$
$P(A$ wins $)=P[(S S$ or $S F S S$ or $S F S S F S$ or... $)$
Or (FSS or FSFSS or...)]
$=\frac{\frac{1}{9}}{1-\frac{2}{9}}+\frac{\frac{2}{27}}{1-\frac{2}{9}}$
$=\frac{1}{9} \times \frac{9}{7}+\frac{2}{27} \times \frac{9}{7}$
$=\frac{1}{7}+\frac{2}{21}=\frac{3+2}{21}=\frac{5}{21}$
$P(A$ winning $)=\frac{5}{21}, P(B$ winning $)=\frac{16}{21}$
6
(a)

Let $E_{1}=1,4,7, \ldots$ (n each)
$E_{2}=2,5,8, \ldots$ (n each)
$E_{3}=3,6,9, \ldots$ (n each)
x and y belong to $\left(E_{1}, E_{2}\right),\left(E_{2}, E_{1}\right)$ or $\left(E_{3}, E_{3}\right)$. So, the required probability is
$\frac{n^{2}+{ }^{n} C_{2}}{{ }^{3 n} C_{2}}=\frac{1}{3}$
7
(c)

Let A be the event that 11 is picked and B be the event that sum is even. The number of ways of selecting 11 along with one more-odd number is $n(A \cap B)={ }^{7} C_{1}$
The number of ways of selecting either two even numbers or selecting two odd numbers is $n(B)$

$$
\begin{aligned}
& =1+{ }^{8} C_{2} \\
& \therefore P(A / B)=\frac{P(A \cap B)}{P(B)} \\
& =\frac{7}{29}=0.24
\end{aligned}
$$

18 draws are required for 2 aces means in the first 17 draws, there is one ace and 16 other cards and $18^{\text {th }}$ draw produces an ace. So, the required probability is
$\frac{{ }^{48} C_{16} \times{ }^{4} C!}{{ }^{52} C_{17}} \times \frac{3}{35}=\frac{561}{15925}$
9
(c)

Given,
$7 a-9 b=0 \Rightarrow b=\frac{7}{9} a$
Hence, number of pairs (a, b) can be $(9,7) ;(18,14) ;(27,21) ;(36,28)$. Hence, the required probability is $4 /{ }^{39} C_{2}=4 / 741$

10 (b)

The total number of cases is $11!/ 2!\times 2!$ The number of favourable cases is $11!/(2!\times 2!)-9$!
Therefore, required probability is
$1-\frac{9!\times 4}{11!}=\frac{53}{55}$

11
 (a)

The divisibility of the product of four numbers depends upon the value of the last digit of each number. The last digit of a number can be any one of the 10 digits $0,1,2, \ldots 9$. So, the total number of ways of selecting last digits of four numbers is $10 \times 10 \times 10 \times 10=10^{4}$. If the product of the 4 numbers is not divisible by 5 or 10 , then the number of choices for the last digit of each number is 8 (excluding 0 or 5). So, favourable number of ways is 8^{4}. Therefore, the probability that the product is not divisible by 5 or 10 is $(8 / 10)^{4}$. Hence, the required probability is $1-(8 / 10)^{4}=369 / 625$
12 (c)
Let $E=$ event when each American man is seated adjacent to his wife
and $A=$ event when Indian man is seated adjacent to his wife.
Now, $n(A \cap E)=(4!) \times(2!)^{5}$
Even when each American man is seated adjacent to his wife.

$$
\text { Again, } n(E)=(5!) \times(2!)^{4}
$$

$\therefore P\left(\frac{A}{E}\right)=\frac{n(A \cap E)}{n(E)}$
$=\frac{(4!) \times(2!)^{3}}{(5!) \times(2!)^{4}}=\frac{2}{5}$
13
(c)

Let the probability that a man aged x dies in a year p. Thus the probability that a man aged x does not die in a year $=1-p$. The probability that all n men aged x do not die in a year is $(1-p)^{n}$. Therefore, the probability that at least one man dies in a year is $1-(1-p)^{n}$. The probability that out of n men, A_{1} dies first is $1 / n$. Since this event is independent of the event that at least one man
dies in a year, hence, the probability that A_{1} dies in the year and he is first one to die is $1 / n[1-$ $\left.(1-p)^{n}\right]$
14
(b)

Let us consider the following events
A : card shows up black
B_{1} : card with both sides black
B_{2} : card with both sides white
B_{1} : card with one side white and one black

$P\left(B_{1}\right)=\frac{2}{10}, P\left(B_{2}\right)=\frac{3}{10}, P\left(B_{3}\right)=\frac{5}{10}$
$P\left(A / B_{1}\right)=1, P\left(A / B_{2}\right)=0 P\left(A / B_{3}\right)=\frac{1}{2}$
$P\left(B_{1} / A\right)=\frac{\frac{2}{10} \times 1}{\frac{2}{10} \times 1+\frac{3}{10} \times(0)+\frac{5}{10} \times \frac{1}{2}}=\frac{4}{4+5}=\frac{4}{9}$
15
(c)

Possibilities of getting 9 are $(5,4),(4,5),(6,3),(3,6)$
$\therefore p=\frac{4}{36}=\frac{1}{9}$ and $q=1-\frac{1}{9}=\frac{8}{9}$
Therefore, the required probability is
${ }^{3} C_{2} q^{1} p^{2}=(3)\left(\frac{8}{9}\right)\left(\frac{1}{9}\right)^{2}=\frac{8}{243}$
16 (d)
The number of ways of arranging n numbers is n ! In each order obtained, we must now arrange the digits $1,2, \ldots k$ as group and the $n-k$ remaining digits. This can be done in $(n-k+1)$! ways. Therefore, the probability for the required event is $(n-k+1)!/ n!$
17 (a)
For each toss, there are four choices:

1. A gets head, B gets head
2. $\quad A$ gets tail, B gets head
3. A gets head, B gets tail
4. $\quad A$ gets tail, B gets tail

Thus, exhaustive number of ways is 4^{50}. Out of the four choices listed above, (iv) is not favourable to the required event in a toss. Therefore, favourable number of cases is 3^{50}. Hence, the required probability is $(3 / 4)^{50}$

18 (c)

Let a_{n} be the number5 of strings of H and T of length n with no two adjacent H 's. Then $a_{1}=2, a_{2}$ $=3$. Also,
$a_{n+2}=a_{n+1}+a_{n}$ (since the string must with T or $H T$)
So, $a_{3}=5, a_{4}=8, a_{5}=8+5=13$
Therefore, the required probability is $13 / 2^{5}=13 / 52$
19
(a)

We have ratio of the ships A, B and C for arriving safely are $2: 5,3: 7$ and $6: 11$, respectively.
Therefore, the probability of ship A for arriving safely is $2 /(2+5)=2 / 7$
Similarly, for B the probability is $3 /(3+7)=3 / 10$ and for C the probability is $C=6 /(6+11)=6 / 17$
Therefore, the probability of all the ships for arriving safely is $(2 / 7) \times(3 / 10) \times(6 / 17) 18 / 595$
20
(a)

Out of 9 socks, 2 can be drawn in ${ }^{9} C_{2}$ ways. Therefore, the total number of cases is ${ }^{9} C_{2}$. Two socks drawn from the drawer will match if either both are brown or both are blue. Therefore, favourable number of cases is ${ }^{5} C_{2}+{ }^{4} C_{2}$. Hence, the required probability is

$$
\frac{{ }^{5} C_{2}+{ }^{4} C_{2}}{{ }^{9} C_{2}}=\frac{4}{9}
$$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | B | A | D | B | A | C | C | C | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | C | C | B | C | D | A | C | A | A |
| | | | | | | | | | | |

