

CLASS: XIIth SUBJECT: MATHS DATE: DPP No.: 6

Topic:-PROBABILITY

If the integers $\ m$ and $\ n$ are chosen at random between 1 and 100, then the probability that a number of the form $\ 7^m + 7^n$ is divisible by 5 equals -

	(A)	$\frac{1}{4}$		(B) $\frac{1}{7}$			(C)	8	(D) $\frac{1}{49}$	
2.			, b, B, c a etical orde			ed at rando	om in a		probability that the lower ca	se letters
	(A)	$\frac{1}{6}$		(B)	$\frac{1}{2}$		(C)	$\frac{1}{5}$	(D) $\frac{1}{30}$	
3.	indepen probabi	dently an lity that a	d with eq ll 5 perso	ual prob ns leave	ability, o at differ	can leave ent floors	the cabi		ouilding. Suppose that each ther floor, starting from the	
4.	A bag replacer	contains	5 balls, to all the rite, is	hree rec	l and tv	vo white. vn or all t	Balls a	are randon te balls are	anly removed one at a time drawn. The probability that $(D)^{\frac{7}{10}}$	
5.	a Head; players,	otherwis is	e B wins.	If the pi	obabilit	y of a head	d is p, t	he value of	ins if A tosses a Tail before p for which the game is fa	
6.	The ch in a ga	ance tha	nt a 13 c ridge, in	ard cor which	nbinati 9 card	on from s are of	a pack the sar	(D) $\frac{\sqrt{5}-2}{2}$ s of 52 plus suit, is	aying cards is dealt to	a player
7.	The entreach en	ries in a t try, the p	wo-by-tw	o detern that the	ninant a		s that a	re chosen r	ne of these andomly and independently that the value of the deter	
	(A) $\frac{1}{3}$			(B)	$\frac{1}{2}$		(C) $\frac{2}{3}$		$(D)^{\frac{\sqrt{2}}{2}}$	

1.

8.	A die is thrown a fixed number of times. If probability of getting even number 3 times is same as t probability of getting even number 4 times, then probability of getting even number exactly once is											
	(A)	$\frac{1}{4}$		(B) $\frac{3}{128}$	3	(C)	$\frac{5}{64}$	(D) $\frac{7}{128}$				
9.		likely, th			a plate h			alindrome		possible license palindrome (or		
	(A)	$\frac{7}{52}$		(B)	$\frac{9}{65}$		(C)	$\frac{8}{65}$		(D) none		
10.	If two subsets A and B of set S containing n elements are selected at random, then the probabil $A \cap B = \phi$ and $A \cup B = S$ is								pability that			
	(A)	$\frac{1}{2}$		(B)	$\frac{1}{2^n}$		(C)	$\left(\frac{3}{4}\right)^4$	(D) $\frac{1}{3^n}$			
11.	Two cards are drawn from a well shuffled pack of 52 playing cards one by one. If A: the event that the second card drawn is an ace and B: the event that the first card drawn is an ace card. then which of the following is true?											
	(A) P(A	(A) $P(A) = \frac{4}{17}$; $P(B) = \frac{1}{13}$ (C) $P(A) = \frac{1}{13}$; $P(B) = \frac{1}{17}$						$A) = \frac{1}{13}; P$	$P(B) = \frac{1}{13}$			
	(C) P(A	(C) $P(A) = \frac{1}{13}$; $P(B) = \frac{1}{17}$					(B) $P(A) = \frac{1}{13}$; $P(B) = \frac{1}{13}$ (D) $P(A) = \frac{16}{221}$; $P(B) = \frac{4}{51}$					
12.	A fair d equal to		wn 3 time	es. The	chance th	nat sum o	f three n	umbers a	ppearing o	on the die is less	than 11, is	
	(A)	$\frac{1}{2}$		(B) $\frac{2}{3}$			(C)	$\frac{1}{6}$		(D) $\frac{5}{8}$		
13.	If an intequation (A)		\mathbf{x}^2 -		+1 = 0 a		$10 \le q$ (C)	≤ 10 , then $\frac{14}{21}$	1	pability that the (D) $\frac{17}{21}$	roots of the	
14.	with P(A) = P(1) e events	B) = P(0) A, B and 0	C) = , P C are do	(D) = P(C)		P(f) = . $e, \}, B = .$	{c, d, e,		= {b, c, f}. ler sequance is		
	(A) $p_1 <$	p ₃ < p ₂ <	p_4	(B) p ₁ <	$< p_4 < p_3 <$	< p ₂	$(C) p_1 <$	$< p_3 < p_4 <$	² p ₂	(D) $p_3 < p_1 < p_4$	< p ₂	
15.	faces. A	die is ch	osen at ra	ndom f	rom the b		rolled th	ree times die, is -		ne number five or sup the face five		

16. Let a red die, a blue die, a green die and a white die are rolled once, the dice being fair. The outcomes on the red, blue, green and white die denote the numbers a, b, c and d respectively. Let E denotes the event that absolute value of (a - 1)(b - 2)(c - 3)(d - 6) = 1, then P(E) is

(A) $\frac{1}{324}$ (B) $\frac{1}{648}$ (C) $\frac{2}{324}$ (D) $\frac{1}{162}$

- 17. A problem in Mathematics is given to three students A, B, C and their respectively probability of solving the problem is and . Probability that the problem is solved is-
 - (A) $\frac{3}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{2}{3}$
- (D) $\frac{1}{3}$
- 18. If A and B are events such that $P(A \cup B) = P(A \cap B) = 1$, then is
 - (A) $\frac{5}{12}$
- (B) $\frac{3}{8}$
- (C) $\frac{5}{8}$
- (D) $\frac{1}{4}$
- 19. A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of success is-
 - $(A)^{\frac{8}{3}}$

(B) $\frac{3}{8}$

- (C)
- (D) $\frac{5}{4}$
- 20. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is-
 - (A) $\frac{4}{5}$

(D) $\frac{2}{5}$