CLASS : XIth
DATE:
Solutions
SUBJECT : MATHS
DPP No. : 6

Topic :- PROBABILITY

2. There are 6 possible arrangements of a, b, c and only one of them is in alphabetical order.

Alternatively $\frac{\left.{ }^{6} \mathrm{C}_{3} \text { (for } \mathrm{a}, \mathrm{b}, \mathrm{c}\right) \cdot 3!}{6!}=\frac{1}{6}$
4.
$\left.\begin{array}{l}\begin{array}{l}\text { WW } \\ \text { RRR }\end{array} \\ S=\{W W \text { or } \underbrace{\text { RWW }}_{\text {WRW }} \quad \underbrace{\text { RRWW }}_{\underbrace{\underbrace{W}_{R W R W}}}\end{array}\right\}$
$\mathrm{P}($ last drawn ball is white $)=\frac{2}{5} \cdot \frac{1}{4}+(2)\left(\frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}\right)+$
(3) $\left(\frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}\right)=\frac{1}{10}+\frac{1}{5}+\frac{3}{10}=\frac{6}{10}$
5. $\mathrm{P}(\mathrm{H})=\mathrm{p} ; \quad \mathrm{P}(\mathrm{T})=1-\mathrm{p}$

A wins if A throws a Tail before B tosses a Head
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{T}$ or H T T or H T H T T or)
$[\mathrm{HTT} \Rightarrow \mathrm{A}$ throws Head and B throws Tail and again A
throws a Tail]
$\therefore \quad \frac{1-\mathrm{p}}{1-\mathrm{p}(1-\mathrm{p})}=\frac{1}{2} \Rightarrow 1-\mathrm{p}+\mathrm{p}^{2}=2-2 \mathrm{p}$
$\Rightarrow \mathrm{p}^{2}+\mathrm{p}-1=0$
$\Rightarrow \mathrm{p}=\frac{\frac{-1 \pm \sqrt{1+4}}{2}}{2}=\frac{\sqrt{5}-1}{2}$
7. Determinant $=a d-b c$
probability that randomly chosen product (xy) will be odd
$=\mathrm{P}($ both odd $)=\mathrm{p}^{2}$
$\therefore \quad$ Probability (xy) is even $=1-\mathrm{p}^{2}$
Now ($\mathrm{ad}-\mathrm{bc}$) is even
\Rightarrow both odd or both even $=p^{4}+\left(1-p^{2}\right)^{2}$

Hence $\mathrm{p}^{4}+\left(1-\mathrm{p}^{2}\right)^{2}=\frac{1}{2}$
put $\mathrm{p}^{2}=\mathrm{t} ; \mathrm{t}^{2}+(1-\mathrm{t})^{2}=\frac{\frac{1}{2}}{} \Rightarrow 2 \mathrm{t}^{2}-2 \mathrm{t}+=0 \quad \Rightarrow 4 \mathrm{t}^{2}-4 \mathrm{t}+1=0$
$(2 \mathrm{t}-1)^{2}=0 \Rightarrow \mathrm{t}=\frac{1}{2} ; \quad \therefore \mathrm{p}^{2}=\frac{1}{2}$;
Hence $p=\frac{1}{\sqrt{2}}$
9. letters Digits

\square	$\square 1$
$26 \times 26 \times 1$	$10 \times 10 \times 1$

$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{26 \times 26 \times 1}{(26)^{3}}+\frac{10 \times 10 \times 1}{(10)^{3}}-\frac{26 \times 26 \times 1}{(26)^{3}} \cdot \frac{10 \times 10 \times 1}{(10)^{3}}$
$=\quad \frac{1}{26}+\frac{1}{10}-\frac{1}{260}=\frac{7}{52}$
12. $\mathrm{n}(\mathrm{S})=216$
x_{1} : number appearing on first dice.
x_{2} : number appearing on second dice.
x_{3} : number appearing on third dice.
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \leq 10\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in[1,6]\right)$
$\Rightarrow x_{1}+x_{2}+x_{3} \leq 7$ (after giving 1 each to x_{1}, x_{2}, x_{3})
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{X}=7$ (adding X as a false beggar)
Total number of solutions ${ }^{(7+3)} \mathrm{C}_{3}={ }^{10} \mathrm{C}_{3}=120$
Now, number of solutions when any one of x_{1}, x_{2}, x_{3} takes the value 7 is $x_{1}+x_{2}+x_{3}+X=1$
$\Rightarrow{ }^{(1+3)} \mathrm{C}_{3}={ }^{4} \mathrm{C}_{3}=4$
\therefore total number of ways are ${ }^{10} \mathrm{C}_{3}-{ }^{4} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{1}$

$$
=120-12=108
$$

$\therefore \quad$ required probability is $\frac{108}{216}=\frac{1}{2}$
14. Given $\mathrm{P}(\mathrm{A})=\frac{1}{16} ; \mathrm{P}(\mathrm{B})=\frac{1}{16} ; \mathrm{P}(\mathrm{C})=\frac{2}{16}$;
$\mathrm{P}(\mathrm{D})=\frac{3}{16} ; \mathrm{P}(\mathrm{e})=\frac{4}{16} ; \mathrm{P}(\mathrm{f})=\frac{\frac{5}{16}}{16}$;
$P(a, c, e)=P(A)=\frac{1}{16}+\frac{2}{16}+\frac{4}{16}=\frac{7}{16} ; A^{c}=\{b, d, f\}$
$P(c, d, e, f)=P(B)=\frac{2}{16}+\frac{3}{16}+\frac{4}{16}+\frac{5}{16}=\frac{8}{16}$
$\mathrm{P}(\mathrm{b}, \mathrm{c}, \mathrm{f})=\mathrm{P}(\mathrm{C})=\frac{\frac{1}{16}}{16}+\frac{2}{16}+\frac{5}{16}=\frac{8}{16}$
$\mathrm{p}_{1}=\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{c}, \mathrm{e})}{\mathrm{P}(\mathrm{B})}=\frac{6}{14}=\frac{3}{7}$
$\mathrm{p}_{2}=\mathrm{P}(\mathrm{B} / \mathrm{C})=\frac{\mathrm{P}(\mathrm{B} \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})}=\frac{\mathrm{P}(\mathrm{c}, \mathrm{f})}{\mathrm{P}(\mathrm{C})}=\frac{7}{8}=\frac{7}{8}$
$p_{3}=P\left(C / A^{c}\right)=\frac{\mathrm{P}\left(\mathrm{C} \cap \mathrm{A}^{\mathrm{c}}\right)}{\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)}=\frac{\mathrm{P}(\mathrm{b}, \mathrm{f})}{\mathrm{P}(\mathrm{b}, \mathrm{d}, \mathrm{f})}=\frac{6}{9}=\frac{2}{3}$
$\mathrm{p}_{4}=\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} / \mathrm{C}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{C}\right)}{\mathrm{P}(\mathrm{C})}=\frac{\mathrm{P}(\mathrm{b}, \mathrm{f})}{\mathrm{P}(\mathrm{b}, \mathrm{c}, \mathrm{f})}=\frac{6}{8}=\frac{3}{4}$
Hence $\mathrm{p}_{1}=\frac{72}{168} ; \mathrm{p}_{2}=\frac{\frac{147}{168}}{} ; \mathrm{p}_{3}=\frac{\frac{112}{168}}{16} \mathrm{p}_{4}=\frac{\frac{126}{168}}{16}$;

$$
\mathrm{p}_{1}<\mathrm{p}_{3}<\mathrm{p}_{4}<\mathrm{p}_{2} \Rightarrow \text { (C) }
$$

15. Events are defined as
$\mathrm{E}_{1}=$ A rigged die is chosen
$\mathrm{E}_{2}=$ A fair die is chosen
$\mathrm{A}=$ die shows 5 in all the three times
using Baye's Theorem :
$P\left(E_{1} / A\right)=\frac{P\left(E_{1}\right) P\left(A / E_{1}\right)}{P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)}$

$$
=\frac{\frac{1}{4} \times(1)^{3}}{\frac{1}{4} \times(1)^{3}+\frac{3}{4} \times\left(\frac{1}{6}\right)^{3}}=\frac{216}{219}
$$

16. 'a' can take only one value i.e. 2 Note: absolute ' b ' can be 1 or 3 i.e. two values 'c' can be 2 or 4 i.e. two values and 'd' can take only one value i.e. 5 hence total favourable ways $=1 \times 2 \times 2=4$
$n(S)=6^{4}=1296$
$\mathrm{P}(\mathrm{E})=\frac{4}{1296}=\frac{1}{324}$
17. Probability problem is not solved by A = $1-\frac{1}{2}=\frac{1}{2}$

Probability problem is not solved by $\mathrm{B}=1^{\frac{1}{3}}=\frac{\frac{2}{3}}{3}$
Probability problem is not solved by $\mathrm{C}=1-\frac{1}{4}=\frac{3}{4}$
Probability of solving the problem $=1-\mathrm{P}$ (not solved by any body)
$\therefore \mathrm{P}=1-\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}=1-\frac{1}{4}=\frac{3}{4}$
18. $\begin{aligned} & \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{4}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4} \\ & \mathrm{P}(\overline{\mathrm{A}})=\frac{\frac{2}{3}}{} \quad \Rightarrow \mathrm{P}(\mathrm{A})=\frac{\frac{1}{3}}{}\end{aligned}$
$\therefore \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$\frac{1}{4}=\frac{1}{3}+P(B)-\frac{3}{4} \Rightarrow P(B)=\frac{2}{3}$
$\mathrm{P}(\cap \mathrm{B})=\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{2}{3}-\frac{1}{4}=\frac{8-3}{12}=\frac{5}{12}$.
19. Probability of getting odd $\mathrm{p}=\frac{3}{6}=\frac{1}{2}$

Probability of getting others $q=\frac{3}{6}=\frac{1}{2}$
Variance $=n p q=5 .{ }^{\frac{1}{2}} .{ }^{\frac{1}{2}}=\frac{5}{4}$
20. Out of 5 horses only one is the winning horse. The probability that Mr. A selected the losing horse $=\frac{4}{5} \times \frac{3}{4}$
\therefore The probability that Mr. A selected the winning horse $=1-\frac{4}{5} \times \frac{3}{4}=\frac{2}{5}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	A	D	C	D	A	D	D	A	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	A	D	C	C	A	A	A	D	D		

