

Hence $p^4 + (1 - p^2)^2 = \frac{1}{2}$ put $p^2 = t$; $t^2 + (1-t)^2 = \frac{1}{2} \implies 2t^2 - 2t + = 0 \implies 4t^2 - 4t + 1 = 0$ $(2t-1)^2 = 0 \implies t = \frac{1}{2}$; $\therefore p^2 = \frac{1}{2}$; Hence $p = \frac{1}{\sqrt{2}}$ 9. letters Digits $26 \times 26 \times 1$ $10 \times 10 \times 1$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{26 \times 26 \times 1}{(26)^3} + \frac{10 \times 10 \times 1}{(10)^3} - \frac{26 \times 26 \times 1}{(26)^3} \cdot \frac{10 \times 10 \times 1}{(10)^3}$ = $\frac{1}{26} + \frac{1}{10} - \frac{1}{260} = \frac{7}{52}$ = 12. n(S) = 216 x_1 : number appearing on first dice. x₂: number appearing on second dice. x_3 : number appearing on third dice. $x_1 + x_2 + x_3 \le 10 (x_1, x_2, x_3 \in [1, 6])$ \Rightarrow x₁ + x₂ + x₃ \leq 7 (after giving 1 each to x₁, x₂, x₃) $x_1 + x_2 + x_3 + X = 7$ (adding X as a false beggar) Total number of solutions ${}^{(7+3)}C_3 = {}^{10}C_3 = 120$ Now, number of solutions when any one of x_1, x_2, x_3 takes the value 7 is $x_1 + x_2 + x_3 + X = 1$ $\Rightarrow (1+3)C_3 = 4C_3 = 4$ \therefore total number of ways are ${}^{10}C_3 - {}^4C_3 \times {}^3C_1$ = 120 - 12 = 108∴ required probability is $\frac{108}{216} = \frac{1}{2}$ 14. Given $P(A) = \frac{1}{16}$; $P(B) = \frac{1}{16}$; $P(C) = \frac{2}{16}$; $P(D) = \frac{5}{16}$; $P(e) = \frac{4}{16}$; $P(f) = \frac{5}{16}$; P(a, c, e) = P(A) = $\frac{1}{16} + \frac{2}{16} + \frac{4}{16} = \frac{7}{16}$; A^c = {b, d, f} P(c, d, e, f) = P(B) = $\frac{2}{16} + \frac{3}{16} + \frac{4}{16} + \frac{5}{16} = \frac{8}{16}$ P(b, c, f) = P(C) = $\frac{1}{16} + \frac{2}{16} + \frac{5}{16} = \frac{8}{16}$ $p_1 = P(A / B) = \frac{P(A \cap B)}{P(B)} = \frac{P(c,e)}{P(B)} = \frac{6}{14} = \frac{3}{7}$ $p_2 = P(B/C) = \frac{\frac{P(B \cap C)}{P(C)}}{\frac{P(C)}{P(C)}} = \frac{\frac{P(c,f)}{P(C)}}{\frac{7}{8}} = \frac{7}{8}$

$$p_{3} = P(C/A^{c}) = \frac{P(C \cap A^{c})}{P(A^{c})} = \frac{P(b,f)}{P(b,c,f)} = \frac{6}{9} = \frac{2}{3}$$

$$p_{4} = P(A^{c}/C) = \frac{P(A^{c} \cap C)}{P(C)} = \frac{P(b,f)}{P(b,c,f)} = \frac{6}{8} = \frac{3}{4}$$
Hence $p_{1} = \frac{72}{168}$; $p_{2} = \frac{147}{168}$; $p_{3} = \frac{112}{168}$; $p_{4} = \frac{126}{168}$; $p_{1} < p_{3} < p_{4} < p_{2} \Rightarrow (C)$
15. Events are defined as
 $E_{1} = A$ rigged die is chosen
 $E_{2} = A$ fair die is chosen
 $A = die$ shows 5 in all the three times
using Baye's Theorem :
$$P(E_{1}/A) = \frac{P(E_{1})P(A/E_{1})}{P(C_{1})P(A/E_{1})+P(E_{2})P(A/E_{2})}$$
16. 'a' can take only one value i.e. 2
'b' can be 1 or 3 i.e. two values
'c' can be 2 or 4 i.e. two values
'c' can be 2 or 4 i.e. two values
'c' can be 2 or 4 i.e. two values
'c' can be 2 or 4 i.e. two values
'c' can be 1 or 3 i.e. two values
'a' can take only one value i.e. 5
hence total favourable ways = 1 × 2 × 2 = 4
n(S) = 6^{4} = 1296
P(E) = \frac{1}{1296} = \frac{1}{224}
17. Probability problem is not solved by $A = 1 - \frac{1}{2} = \frac{1}{2}$
Probability problem is not solved by $B = 1 \frac{3}{3} = \frac{2}{3}$
Probability problem is not solved by $B = 1 - \frac{1}{2} = \frac{1}{4}$
Robin is $P(A \cup B) = \frac{4}{4}$, $P(A \cap B) = \frac{1}{4}$
P($\overline{A} \) = \frac{3}{4} \Rightarrow P(A) = \frac{3}{3}$
Robality of solving the problem = 1 - P (not solved by any body)
 $\therefore P = 1 - \frac{1}{2} = \frac{3}{3} \Rightarrow P(A) = \frac{3}{3}$
Probability P(A \cdot B) = P(A) + P(B) - P(A \cdot B)
 $\frac{1}{4} = \frac{1}{3} + P(B) - \frac{3}{4} \Rightarrow P(B) = \frac{2}{3}$
P(\cdot B) = P(A) + P(B) - P(A \cdot B)
 $\frac{1}{4} = \frac{1}{3} + \frac{8-3}{12} = \frac{5}{12}$.

19. Probability of getting odd p = $\frac{3}{6} = \frac{1}{2}$ Probability of getting others q = $\frac{3}{6} = \frac{1}{2}$ Variance = npq = 5. $\frac{1}{2} \cdot \frac{1}{2} = \frac{5}{4}$

20. Out of 5 horses only one is the winning horse. The probability that Mr. A selected the losing horse = $\frac{4}{5} \times \frac{3}{4}$ \therefore The probability that Mr. A selected the winning horse = $1 - \frac{4}{5} \times \frac{3}{4} = \frac{2}{5}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	Α	D	C	D	А	D	D	A	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	А	D	C	С	А	A	A	D	D

