

DPP DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : MATHS DPP No. : 5

Topic :- PROBABILITY

1. Let the roots of the quadratic equation be α , β

After squaring α^2 , β^2 $\alpha\beta = (\alpha\beta)^2 \implies \alpha\beta(\alpha\beta - 1) = 0$ $\Rightarrow \alpha\beta = 0$ (i) $\Rightarrow \alpha\beta = 1$ (ii) Now $\alpha^2 + \beta^2 = \alpha + \beta$ $(\alpha + \beta)^2 - 2\alpha\beta = (\alpha + \beta)$ $\Rightarrow (\alpha + \beta)^2 - (\alpha + \beta) - 2\alpha\beta = 0$ $(\alpha + \beta) \{(\alpha + \beta) - 1\} = 0$ $(\therefore \alpha\beta = 0)$ $\alpha + \beta = 0$... (3) $\alpha + \beta = 1$... (4) solving (1) & (3) $\alpha = 0, \beta = 0$ solving (1) & (4) $\alpha(1-\alpha) = 0 \implies \alpha = 0, 1$ $\Rightarrow \beta = 1, 0$ solving (2) & (4) $\alpha + = 1$ $\alpha^2 - \alpha + 1 = 0$ $(\alpha, \beta) \in (\omega, \omega^2)$ Hence sample space \rightarrow (0, 0) (1, 1) (0, 1) (ω , ω^2) $P(A) = \frac{2}{4} = \frac{1}{2}$ *.*..

3. $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc < 0$ P(E) \rightarrow when determinant value is negative

а	d	b	c			
0	0	1	1			
0	1	1	1			
1	0	1	1			
					3	13
 Proba	abilit	y wi	ll be	$\rightarrow 1$ -	_ 16 _	= 16

5. We have $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\therefore \frac{2}{3} = \frac{1}{2} + P(B) - \frac{1}{2} P(B) = \frac{1}{2} + \frac{1}{2} P(B)$ $P(B) = \frac{4}{3} - 1 = 1/3 = p_1$ $P(A / B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A) = \frac{1}{2} = p_2$ Again $P(B^c/A) = \frac{P(B^c \cap A)}{P(A)} = \frac{(1-P(B))P(A)}{P(A)}$ $= 1 - \frac{1}{3} = \frac{2}{3} = p_3$ $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ are in A.P.

7.
$$n(S) = \frac{713 \times \times \times}{1000} = 3 \left(\frac{4!}{(2!)(1!)(1!)} \right) = 36$$

 $n(A) = 1; \ p = \frac{1}{36}$
odds in favour 1:35

- 8. H: tossing a Head, P(H) = ; A : event of tossing a 2 with die, P(A) = E: tossing a 2 before tossing a head $P(E) = P^{\left(\overline{H} \cap A \text{ or } \{(\overline{H} \cap \overline{A}) \text{ and } (\overline{H} \cap A)\} \text{ or } \dots \right)}$ $= \left(\frac{1}{2} \cdot \frac{1}{6}\right)_{+} \left(\frac{1}{2} \cdot \frac{5}{6}\right)_{-} \left(\frac{1}{2} \cdot \frac{1}{6}\right)_{+} \dots$ $= \frac{1}{12} + \frac{5}{12} \cdot \frac{1}{12} + \dots \infty$ $P(E) = \frac{\frac{1}{12}}{1 - \frac{5}{12}} = \frac{1}{7}$
- 11. Probability that 3 people out of 7 born on

Wednesday =
$$\frac{{}^{\prime}C_3}{7^3}$$

Probability that 2 people out of remaining 4, born on Thursday is $\frac{C_2}{7^2}$ Probability of remaining 2 born on Sunday is $\frac{^2C_2}{7^2}$ \therefore required probability = $\frac{^7C_3}{7^3} \times \frac{^4C_2}{7^2} \times \frac{^2C_2}{7^2} = \frac{K}{7^6}$ $\Rightarrow K = 30$ 15. $E = \{x \text{ is a prime number}\}$

P(E) = P(2) + P(3) + P(5) + P(7) = 0.62F = (x < 4), P(F) =P(1) + P(2) + P(3) = 0.50 ∴ P (E ∪ F) = P(E) + P(F) - P(E ∩ F) = 0.62 + 0.50 - 0.35 = 0.77

17. For a particular house being selected,

1 Probability = $\overline{3}$ Probability (all the persons apply for the same house) $=^{\left(\frac{1}{3}\times\frac{1}{3}\times\frac{1}{3}\right)}_{3=\frac{1}{9}}$ 19. Let terms of an AP a, a + d, a + 2d, a + 3d \therefore a \ge 1, a + 3d \le 20 $3d \le 19 \implies d \le$ so $d = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ and ± 6 statement 2 is wrong if d = 1then $a + 3d \le 20$ similarly d = -1so in this case also a ≤ 17 so 17 cases will 17 cases will be there be there Total case for $d = \pm 1$ is 34

20.

A $\frac{4}{2} = 12$ L 4 = 24M $\frac{4}{2} = 12$ SA $\frac{3}{2} = 3$ SL 3 = 6Total 57 Next word is SMALL..

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	А	D	D	A	Α	В	А	А	В	С	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	В	D	А	C	В	В	C	А	C	С	