CLASS : XIth
DATE :
Solutions
SUBJECT: MATHS
DPP No. : 5

Topic :- PROBABILITY

1. Let the roots of the quadratic equation be α, β

After squaring α^{2}, β^{2}

$$
\begin{align*}
& \alpha \beta=(\alpha \beta)^{2} \Rightarrow \alpha \beta(\alpha \beta-1)=0 \\
& \Rightarrow \quad \alpha \beta=0 \tag{i}\\
& \Rightarrow \quad \alpha \beta=1 \\
& \text { Now } \quad \alpha^{2}+\beta^{2}=\alpha+\beta \\
& \quad(\alpha+\beta)^{2}-2 \alpha \beta=(\alpha+\beta) \\
& \Rightarrow \quad(\alpha+\beta)^{2}-(\alpha+\beta)-2 \alpha \beta=0 \\
& \quad \begin{array}{l}
(\alpha+\beta) \\
\quad\{(\alpha+\beta)-1\}=0 \quad \text { (i) } \\
\quad \alpha+\beta=0 \quad \ldots \text { (ii) } \\
\quad \alpha+\beta=1 \quad \ldots \text { (4) }
\end{array}
\end{align*}
$$

solving (1) \& (3)

$$
\alpha=0, \beta=0
$$

solving (1) \& (4)

$$
\begin{aligned}
\alpha(1-\alpha)=0 & \Rightarrow \alpha=0,1 \\
& \Rightarrow \beta=1,0
\end{aligned}
$$

solving (2) \& (4)

$$
\begin{aligned}
& \alpha+=1 \\
& \alpha^{2}-\alpha+1=0 \\
& (\alpha, \beta) \in\left(\omega, \omega^{2}\right)
\end{aligned}
$$

Hence sample space $\rightarrow(0,0)(1,1)(0,1)\left(\omega, \omega^{2}\right)$

$$
\therefore \quad \mathrm{P}(\mathrm{~A})=\frac{2}{4}=\frac{1}{2}
$$

3. $\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right|=\mathrm{ad}-\mathrm{bc}<0$
$\mathrm{P}(\mathrm{E}) \rightarrow$ when determinant value is negative

a	d	b	c
0	0	1	1
0	1	1	1
1	0	1	1

$$
\therefore \quad \text { Probability will be } \rightarrow 1-\frac{3}{16}=\frac{13}{16}
$$

5. We have $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\left.\therefore \quad \frac{2}{3}=\frac{1}{2}+\mathrm{P}(\mathrm{B})\right)^{\frac{1}{2}} \mathrm{P}(\mathrm{B})=^{\frac{1}{2}}+\frac{1}{2} \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{B})={ }^{\frac{4}{3}}-1=1 / 3=\mathrm{p}_{1}$
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{B})}=\mathrm{P}(\mathrm{A})=\frac{1}{2}=\mathrm{p}_{2}$
Again $P\left(B^{c} / A\right)=\frac{P\left(B^{c} \cap A\right)}{P(A)}=\frac{(1-P(B)) P(A)}{P(A)}$
$=1--^{\frac{1}{3}}={ }^{\frac{2}{3}}=p_{3}$
$\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ are in A.P.
6. $\mathrm{n}(\mathrm{S})=\underbrace{713 \times \times \times \times}=3\left(\frac{4!}{(2!)(!!)(1!)}\right)=36$
$\mathrm{n}(\mathrm{A})=1 ; \mathrm{p}=\frac{1}{36}$
odds in favour 1:35
7. H : tossing a Head, $\mathrm{P}(\mathrm{H})=$; A : event of tossing a 2 with die, $\mathrm{P}(\mathrm{A})=$

E: tossing a 2 before tossing a head
$\mathrm{P}(\mathrm{E})=\mathrm{P}^{(\overline{\mathrm{H}} \cap \mathrm{A} \text { or }\{(\overline{\mathrm{H}} \cap \overline{\mathrm{A}}) \text { and }(\overline{\mathrm{H}} \cap \mathrm{A})\} \text { or } \ldots \ldots . .)}$
$=\left(\frac{1}{2} \cdot \frac{1}{6}\right)+\left(\frac{1}{2} \cdot \frac{5}{6}\right) .\left(\frac{1}{2} \cdot \frac{1}{6}\right)+\ldots$
$=\frac{1}{12}+\frac{5}{12} \cdot \frac{1}{12}+$ \qquad ∞
$P(E))^{\frac{\frac{1}{12}}{1-\frac{5}{12}}}=\frac{1}{7}$
11. Probability that 3 people out of 7 born on

Wednesday $=\frac{{ }^{7} C_{3}}{7^{3}}$
Probability that 2 people out of remaining 4 , born on Thursday is
Probability of remaining 2 born on Sunday is $\frac{{ }^{2} \mathrm{C}_{2}}{7^{2}}$
\therefore required probability $=\frac{{ }^{7} \mathrm{C}_{3}}{7^{3}} \times \frac{{ }^{4} \mathrm{C}_{2}}{7^{2}} \times \frac{{ }^{2} \mathrm{C}_{2}}{7^{2}}=\frac{\mathrm{K}}{7^{6}}$
$\Rightarrow \mathrm{K}=30$
15. $\mathrm{E}=\{\mathrm{x}$ is a prime number $\}$
$\mathrm{P}(\mathrm{E})=\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(5)+\mathrm{P}(7)=0.62$
$\mathrm{F}=(\mathrm{x}<4), \mathrm{P}(\mathrm{F})=\mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)=0.50$
$\therefore \quad \mathrm{P}(\mathrm{E} \cup \mathrm{F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

$$
=0.62+0.50-0.35=0.77
$$

17. For a particular house being selected,

Probability $=\frac{1}{3}$
Probability (all the persons apply for the same house)

$$
=\left(\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}\right) 3=\frac{1}{9} .
$$

19. Let terms of an AP
$a, a+d, a+2 d, a+3 d$
$\because a \geq 1, a+3 d \leq 20$
$3 \mathrm{~d} \leq 19 \Rightarrow \mathrm{~d} \leq$
so $\mathrm{d}= \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ and ± 6
statement 2 is wrong
if $d=1$
then $\mathrm{a}+3 \mathrm{~d} \leq 20$ similarly $\mathrm{d}=-1$
$\mathrm{a} \leq 17 \quad$ so in this case also
so 17 cases will $\quad 17$ cases will be there
be there
Total case for $\mathrm{d}= \pm 1$ is 34
20.

| A | $\frac{4}{2}$ | $=12$ |
| ---: | :--- | ---: | :--- |
| L | 4 | $=24$ |
| M | $\frac{4}{2}$ | $=12$ |
| | | |
| SA | $\frac{3}{2}$ | $=3$ |
| SL | 3 | $=6$ |

Total 57
Next word is SMALL..

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	D	D	A	A	B	A	A	B	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	D	A	C	B	B	C	A	C	C			

