

**CLASS: XIIth SUBJECT: MATHS** DATE: **DPP NO.: 6** 

The system of equations x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 5 has

a) Unique solution

b) Infinite many solution

c) Inconsistent

d) None of the above

2. The rank of the matrix  $\begin{bmatrix} 4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x) \end{bmatrix}$  is 2, then

a) 
$$k = \frac{5}{2}$$
,  $x = \frac{1}{5}$ 

b) 
$$k = \frac{5}{2}, x \neq \frac{1}{5}$$

b) 
$$k = \frac{5}{2}$$
,  $x \ne \frac{1}{5}$  c)  $k = \frac{1}{5}$ ,  $x = \frac{5}{2}$  d) None of these

3. If  $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ , then  $A^2 =$ 

a) 
$$\begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$$

b) 
$$\begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}$$

a) 
$$\begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$$
 b)  $\begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}$  c)  $\begin{bmatrix} 8 & -5 \\ -5 & -3 \end{bmatrix}$  d)  $\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$ 

d) 
$$\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

4. If  $\omega$  is a root of unity and  $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$ , then  $A^{-1}$  is equal to

a) 
$$\begin{bmatrix} 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{bmatrix}$$

$$b)\frac{1}{3}\begin{bmatrix} 1 & 1 & 1\\ 1 & \omega^2 & \omega\\ 1 & \omega & \omega^2 \end{bmatrix}$$

a) 
$$\begin{bmatrix} 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{bmatrix}$$
 b) 
$$\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix}$$
 c) 
$$\begin{bmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \\ 1 & 1 & 1 \end{bmatrix}$$
 d) 
$$\frac{1}{2} \begin{bmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \\ 1 & 1 & 1 \end{bmatrix}$$

$$d) \frac{1}{2} \begin{bmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \\ 1 & 1 & 1 \end{bmatrix}$$

5. If  $A = [a_{ij}]_{m \times n}$  is a matrix of rank r, then

a) 
$$r = \min(m, n)$$

$$b) r < \min(m, n)$$

c) 
$$r \leq \min(m,n)$$

d) None of these

For each real x: -1 < x < 1. Let A(x) be the matrix  $(1-x)^{-1}\begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix}$  and  $z = \frac{x+y}{1+xy}$ , then

a) 
$$A(z) = A(x)A(y)$$

$$b) A(z) = A(x) - A(y)$$

a) 
$$A(z) = A(x)A(y)$$
 b)  $A(z) = A(x) - A(y)$  c)  $A(z) = A(x)[A(y)]^{-1}$  d)  $A(z) = A(x) + A(y)$ 

7. If  $A(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ , then the matrix  $A^2(\alpha)$  is

- a)  $A(2\alpha)$
- b)  $A(\alpha)$
- c)  $A(3\alpha)$

d)  $A(4\alpha)$ 

8. If *A* is a symmetric matrix and  $n \in N$ , then  $A^n$  is

a) Symmetric matrix

b) A diagonal matrix

c) Skew-symmetric matrix

d) None of the above

9. The inverse matrix of  $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$  is

a) 
$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
 b)  $\begin{bmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \end{bmatrix}$  c)  $\frac{1}{2} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}$  d)  $\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$ 

b) 
$$\begin{bmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \end{bmatrix}$$

c) 
$$\frac{1}{2}\begin{bmatrix} 1 & 2 & 3\\ 3 & 2 & 1\\ 4 & 2 & 3 \end{bmatrix}$$

$$d)\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$$

10. If  $A = \begin{bmatrix} 2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2 \end{bmatrix}$  is expressed as the sum of a symmetric and skew-symmetric matrix, then

the symmetric matrix is

a) 
$$\begin{bmatrix} 2 & 2 & -4 \\ 2 & 3 & 4 \\ -4 & 4 & 2 \end{bmatrix}$$
 b)  $\begin{bmatrix} 2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2 \end{bmatrix}$  c)  $\begin{bmatrix} 4 & 4 & -8 \\ 4 & 6 & 8 \\ -8 & 8 & 4 \end{bmatrix}$  d)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

$$b) \begin{bmatrix} 2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2 \end{bmatrix}$$

c) 
$$\begin{bmatrix} 4 & 4 & -87 \\ 4 & 6 & 8 \\ -8 & 8 & 4 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 11. If the system of linear equations x + 2ay + az = 0, x + 3by + bz = 0 and x + 4cy + cz = 0 has anon-zero solution, then a, b, c
  - a) Are in AP

b) Are in GP

c) Are in HP

- d) Satisfy a + 2b + 3c = 0
- 12. For what value of k the following system of linear equations will have infinite solutions

$$x - y + z = 3$$
,  $2x + y - z = 2$   
and  $-3x + 2ky + 6z = 3$ 

a) 
$$k \neq 2$$

$$b) k = 0c)$$

$$k = 3d$$

$$k \in [2, 3]$$

- 13. The product of two orthogonal matrices is
  - a) Orthogonal
- b) Involutory
- c) Unitary
- d) Idempotent
- 14. The system of equations x + y + z = 8, x y + 2z = 6, 3x + 5y 7z = 14 has
  - a) No solution

b) Unique solution

c) Infinitely many solution

- d) None of the above
- 15. If the system of equations x + ay = 0, az + y = 0 and ax + z = 0 has infinite solutions, then the value of a is
  - a) -1

b)1

c) 0

d) No real values

16.  $\begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix}^{-1} =$ 

a) 
$$\begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix}$$

a) 
$$\begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix}$$
 b)  $\begin{bmatrix} 6 & -5 \\ -7 & 6 \end{bmatrix}$  c)  $\begin{bmatrix} 6 & 5 \\ 7 & 6 \end{bmatrix}$ 

c) 
$$\begin{bmatrix} 6 & 5 \\ 7 & 6 \end{bmatrix}$$

d) 
$$\begin{bmatrix} 6 & -5 \\ 7 & -6 \end{bmatrix}$$

- 17. Let  $F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$ , then  $[F(\alpha)]^{-1}$  is equal to
  - a)  $F(-\alpha)$
- b)  $F(\alpha^{-1})$
- c)  $F(2\alpha)$
- d) None of these

18. Let for any matrix M,  $M^{-1}$  exist which of the following is not true?

a) 
$$|M^{-1}| = |M|^{-1}$$

b) 
$$(M^2)^{-1} = (M^{-1})^2$$

a) 
$$|M^{-1}| = |M|^{-1}$$
 b)  $(M^2)^{-1} = (M^{-1})^2$  c)  $(M^T)^{-1} = (M^{-1})^T$  d)  $(M^{-1})^{-1} = M$ 

d) 
$$(M^{-1})^{-1} = M$$

19. If *A* and *B* are square matrices of size  $n \times n$  such that  $A^2 - B^2 = (A - B)(A + B)$ , then which of the following will be always true?

a) 
$$AB = BA$$

b) Either of A or B is a zero matrix

$$d)A = B$$

20. 
$$x_1 + 2x_2 + 3x_3 = 2x_1 + 3x_2 + x_3 = 3x_1 + x_2 + 2x_3 = 0$$
.

This system of equations has

