CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :-matrices

1. If A and B are matrics such that $A B$ and $A+B$ both are defined, then
a) A and B can be any two matrices
b) A and B are square matrices not necessarily of the same order
c) A, B are square matrices of the same order
d) Number of columns of A is same as the number of rows of B
2. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that $x=c y+b z, y=a z+c x$, and $z=b x+a y$ have non-zero solution. Then, $a^{2}+b^{2}+c^{2}+2 a b c$ is equal to
a) 1
b) 2
c) -1
d) 0
3. If I_{n} is the identity matrix of order n, then rank of I_{n} is
a) 1
b) n
c) 0
d) None of these
4. If the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda\end{array}\right]$ is singular, then λ is equal to
a) 3
b) 4
c) 2
d) 5
5. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $I+A+A^{2}+A^{3}+\ldots \infty$ equals to
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}-1 & -2 \\ -3 & -4\end{array}\right]$
c) $\left[\begin{array}{cc}1 / 2 & -1 / 3 \\ -1 / 2 & 0\end{array}\right]$
d) $\left[\begin{array}{cc}-1 / 4 & 1 / 3 \\ 1 / 2 & 0\end{array}\right]$
6. If A is a non-singular square matrix of order n, then the rank of A is
a) Equal to n
b) Less than n
c) Greater than n
d) None of these
7. If $\mathrm{A}=\left[\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right]$ and $f(t)=t^{2}-3 t+7$, then $f(A)+\left[\begin{array}{cc}3 & 6 \\ -12 & -9\end{array}\right]$ is equal to
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
8. The system of linear equations
$x+y+z=2$
$2 x+y-z=3$
$3 x+2 y+k z=4$ has a unique solution if
a) $k \neq 0$
b) $-1<k<1$
c) $-2<k<2$
d) $k=0$
9. The number of solutions of the system of equations
$2 x+y-z=7, x-3 y+2 z=1, x+4 y-3 z=5$ is
a) 0
b) 1
c) 2
d) 3
10. If $X=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$, the value of X^{n} is equal to
a) $\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$
b) $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$
c) $\left[\begin{array}{ll}3^{n} & (-4)^{n} \\ 1^{n} & (-1)^{n}\end{array}\right]$
d) None of these
11. If I_{3} is the identity matrix of order 3 , then $\left(I_{3}\right)^{-1}=$
a) 0
b) $3 I_{3}$
c) I_{3}
d) Not necessarily exists
12. If $A=\left[a_{i j}\right]$ is a square matrix of order $n \times n$ and k is a scalar, then $|k A|=$
a) $k^{n}|A|$
b) $k|A|$
c) $k^{n-1}|A|$
d) None of these
13. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then A^{2} is equal to
a) Null matrix
b) Unit matrix
c) $-A$
d) A
14. If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then value of α for which $A^{2}=B$ is
a) 1
b) -1
c) 4
d) No real values
15. If A is a square matrix such that $A(\operatorname{adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then $|\operatorname{adj} A|=$
a) 4
b) 16
c) 64
d) 256
16. If ω is a complex cube root of unity and $A=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]$, then A^{50} is
a) $\omega^{2} A$
b) ωA
c) A
d) 0
17. If $A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A B=I_{3}$, then $x+y$ equals
a) 0
b) -1
c) 2
d) None of these
18. The adjoint of the matrix $\left[\begin{array}{c}\cos \theta \\ -\sin \theta \sin \theta \\ -\cos \theta\end{array}\right]$ is
a) $\left[\begin{array}{cc}\cos \theta-\sin \theta \\ \sin \theta \cos \theta\end{array}\right]$
b) $\left[\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
c) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
d) $\left[\begin{array}{cc}-\sin \theta & \cos \theta \\ \cos \theta \sin \theta\end{array}\right]$
19. The inverse matrix of $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ is
a) $\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} \frac{1}{2} \\ -4 & 3 & \frac{3}{4} \\ \frac{5}{2} & -\frac{3}{2} \frac{1}{2}\end{array}\right]$
b) $\left[\begin{array}{ccc}\frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$
c) $\frac{1}{2}\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$
d) $\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ 5 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$
20. If $f(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$, then $\left\{f(\theta)^{-1}\right\}$ is equal to
a) $f(-\theta)$
b) $f(\theta)^{-1}$
c) $f(2 \theta)$
d) None of these

