

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 3

Topic :-MATRICES

- If *A* and *B* are matrics such that *AB* and *A* + *B* both are defined, then
 a) *A* and *B* can be any two matrices
 - b) A and B are square matrices not necessarily of the same order
 - c) *A*,*B*are square matrices of the same order
 - d) Number of columns of A is same as the number of rows of B

2. Let *a*, *b*, *c* be any real numbers. Suppose that there are real numbers *x*, *y*, *z* not all zero such that x = cy + bz, y = az + cx, and z = bx + ay have non-zero solution. Then, $a^2 + b^2 + c^2 + 2 abc$ is equal to

a) 1 b) 2 c) -1 d) 0
3. If
$$I_n$$
 is the identity matrix of order n , then rank of I_n is
a) 1 b) n c) 0 d) None of these
4. If the matrix $A = \begin{bmatrix} \frac{8}{-6} & \frac{-6}{7} & \frac{2}{-4} \\ \frac{2}{-4} & \frac{2}{4} \end{bmatrix}$ is singular, then λ is equal to
a) 3 b) 4 c) 2 d) 5
5. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $I + A + A^2 + A^3 + ...\infty$ equals to
a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$ c) $\begin{bmatrix} 1/2 & -1/3 \\ -1/2 & 0 \end{bmatrix}$ d) $\begin{bmatrix} -1/4 & 1/3 \\ 1/2 & 0 \end{bmatrix}$
6. If A is a non-singular square matrix of order n , then the rank of A is
a) Equal to n b) Less than n c) Greater than n d) None of these
7. If $A = \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix}$ and $f(t) = t^2 - 3t + 7$, then $f(A) + \begin{bmatrix} 3 & 6 \\ -122 & -9 \end{bmatrix}$ is equal to
a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
8. The system of linear equations
 $x + y + z = 2$
 $2x + y - z = 3$
 $3x + 2y + kz = 4$ has a unique solution if

a) $k \neq 0$ b) -1 < k < 1 c) -2 < k < 2 d) k = 0

9. The number of solutions of the system of equations

$$2x + y - z = 7, x - 3y + 2z = 1, x + 4y - 3z = 5 \text{ is}$$
a) 0 b) 1 c) 2 d) 3
10. If $X = \begin{bmatrix} 3 & -4 & n \\ -1 & -1 \end{bmatrix}$, the value of X^n is equal to
a) $\begin{bmatrix} 3^n & -4 & n \\ -n & -n \end{bmatrix}$ b) $\begin{bmatrix} 2 + n & 5 - n \\ n & -n \end{bmatrix}$ c) $\begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$ d) None of these
11. If I_3 is the identity matrix of order 3, then $(I_3)^{-1} =$
a) 0 b) $3I_3$ c) I_3 d) Not necessarily
exists
12. If $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is a square matrix of order $n \times n$ and k is a scalar, then $|kA| =$
a) $k^n |A|$ b) $k|A|$ c) $k^{n-1}|A|$ d) None of these
13. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & b & -1 \end{bmatrix}$, then A^2 is equal to
a) Null matrix b) Unit matrix c) $-A$ d) A
14. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & a & b \end{bmatrix}$, then A^2 is equal to
a) 1 b) -1 c) 4 d) No real values
15. If A is a square matrix such that $A(adj A) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 4 & 0 \end{bmatrix}$, then $|adj A| =$
a) 4 b) 16 c) 64 d) 256
16. If ω is a complex cube root of unity and $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$, then A^{50} is
a) $\omega^2 A$ b) ωA c) A d) 0
17. If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = I_3$, then $x + y$ equals
a) 0 b) -1 c) 2 d) None of these
18. The adjoint of the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is
a) $\begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ b) $\begin{bmatrix} \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ c) $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ d) $\begin{bmatrix} -\sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$

19. The inverse matrix of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ is a) $\begin{bmatrix} \frac{1}{2} - \frac{1}{2}\frac{1}{2} \\ -\frac{4}{3} & \frac{3}{-1} \\ \frac{5}{2} & -\frac{3}{2}\frac{1}{2} \end{bmatrix}$ b) $\begin{bmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \end{bmatrix}$ c) $\frac{1}{2} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}$ d) $\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$ 20. If $f(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $\{f(\theta)^{-1}\}$ is equal to a) $f(-\theta)$ b) $f(\theta)^{-1}$ c) $f(2\theta)$ d) None of these

