CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 2

Topic :-matrices

1. Matrix A is such that $A^{2}=2 A-I$, where I is the indentity matrix, then for $n \geq 2, A^{n}$ is equal to
a) $n A-(n-1) I$
b) $n A-I$
c) $2^{n-1} A-(n-1) I$
d) $2^{n-1} A-I$
2. Matrix M_{r} is defined as $M_{r}=\left[\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right], r \in N$ value of $\operatorname{det}\left(M_{1}\right)+\operatorname{det}\left(M_{2}\right)+\operatorname{det}\left(M_{3}\right)+\ldots+$ $\operatorname{det}\left(M_{2007}\right)$ is
a) 2007
b) 2008
c) 2008^{2}
d) 2007^{2}
3. The number of solutions of the system of equations $x_{2}-x_{3}=1,-x_{1}+2 x_{3}=-2, x_{1}-2, x_{1}-2$ $x_{2}=3$ is
a) Zero
b) One
c) Two
d) Infinite
4. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ such that $a_{i i}=k$ for all i, then trace of A is equal to
a) $n k$
b) $n+k$
c) n / k
d) None of these
5. If $D=\operatorname{diag}\left[d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right]$, where $d_{i} \neq 0 \forall i=1,2, \ldots, n$ then D^{-1} is equal to
a) O
b) I_{n}
c) diag $\left[d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}^{-1}\right]$
d) None of the above
6. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, then $\lim _{n \rightarrow \infty} \frac{1}{n} A^{n}$ is
a) $\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
d) None of these
7. The system of equations $2 x+y-5=0, x-2 y+1=0,2 x-14 y-a=0$, is consistent.Then, a is equal to
a) 1
b) 2
c) 5
d) None of these
8. The system of equation
$a x+y+z=\alpha-1$
$x+\alpha y+z=\alpha-1$
$x+y+\alpha z=\alpha-1$
Has no solution, if α is
a) 1
b) Not-2
c) Either-2 or1
d) -2
9. A matrix $A=\left|a_{i j}\right|$ is an upper triangular matrix, if
a) It is a square matrix and $a_{i j}=0, i<j$
b) It is a square matrix and $a_{i j}=0, i>j$
c) It is not a square matrix and $a_{i j}=0, i>j$
d) It is not a square matrix and $a_{i j}=0, i<j$
10. If $\mathrm{A}=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$ and A^{2} is the identity matrix, then x is equal to
a) -1
b) 0
c) 1
d) 2
11. $A=\left[\begin{array}{ll}0 & 3 \\ 2 & 0\end{array}\right]$ and $A^{-1}=\lambda(\operatorname{adj} A)$, then λ equal to
a) $-\frac{1}{6}$
b) $\frac{1}{3}$
c) $-\frac{1}{3}$
d) $\frac{1}{6}$
12. If $A=\left[a_{i j}\right]$ is a 4×4 matrix and $C_{i j}$ is the cofactor of the element $a_{i j}$ in $|A|$, then the expression $a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}+a_{14} C_{14}$ is equal to
a) 0
b) -1
c) 1
d) $|A|$
13. For what value of λ, the system of equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=10$ is consistent?
a) 1
b) 2
c) -1
d) 3
14. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then A^{100} is equal to
a) $2^{100} \mathrm{~A}$
b) $2^{99} \mathrm{~A}$
c) 100 A
d) 299 A
15. Inverse of the matrix $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$ is
a) $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
b) $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$
c) $\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
d) $\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
16. Which of the following is correct?
a) Determinant is square matrix
b) Determinant is a number associated to a matrix
c) Determinant is a number associated to a square matrix
d) None of these
17. If $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then B equals
a) $I \cos \theta+J \sin \theta$
b) $I \sin \theta+J \cos \theta$
c) $I \cos \theta-J \sin \theta$
d) $-I \cos \theta+J \sin \theta$
18. What must be the matrix X if $2 X+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$?
a) $\left[\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right]$
b) $\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$
c) $\left[\begin{array}{rr}2 & 6 \\ 4 & -2\end{array}\right]$
d) $\left[\begin{array}{ll}2 & -6 \\ 4 & -2\end{array}\right]$
19. A and B be 3×3 matrices. Then, $A B=O$ implies
a) $A=O$ and $B=O$
b) $|A|=O$ and $|B|=O$
c) Either $|A|=O$ or $|B|=O$
d) $A=O$ or $B=O$
20. Let $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], D=\left[\begin{array}{c}3 \\ 5 \\ 11\end{array}\right]$ and $A=\left[\begin{array}{ccc}1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2\end{array}\right]$, if $X=A^{-1} D$, then X is equal to
a) $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$
b) $\left[\begin{array}{c}\frac{8}{3} \\ \frac{-1}{3} \\ 0\end{array}\right]$
c) $\left[\begin{array}{c}-\frac{8}{3} \\ 1 \\ 0\end{array}\right]$
d) $\left[\begin{array}{c}\frac{8}{3} \\ \frac{1}{3} \\ -1\end{array}\right]$

