

CLASS: XIIth DATE:

SUBJECT: MATHS DPP NO.: 2

1.	Matrix A is such that A^2	$^2 = 2A - I$, where I is the	e indentity matrix, then	for $n \ge 2$, A^n is equal to
	a) nA = (n-1)I	h)nA = I	c) $2^{n-1} A - (n-1)I$	$d) 2^{n-1} A = I$

Matrix M_r is defined as $M_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$, $r \in N$ value of $\det(M_1) + \det(M_2) + \det(M_3) + ... +$ $\det(M_{2007})$ is

- a) 2007
- b) 2008
- c) 2008^2
- $d)2007^2$

3. The number of solutions of the system of equations $x_2 - x_3 = 1$, $-x_1 + 2x_3 = -2$, $x_1 - 2$, $x_1 - 2$ $x_2 = 3$ is

- a) Zero
- b) One
- c) Two
- d) Infinite

4. If $A = [a_{ij}]$ is a scalar matrix of order $n \times n$ such that $a_{ii} = k$ for all i, then trace of A is equal to

a) nk

- b)n+k
- c) n/k

d) None of these

5. If $D = \text{diag}[d_1, d_2, d_3, ..., d_n]$, where $d_i \neq 0 \forall i = 1, 2, ..., n$ then D^{-1} is equal to

a) 0

c) diag $[d_1^{-1}, d_2^{-1}, ..., d_n^{-1}]$

d) None of the above

6. If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, then $\lim_{n \to \infty} \frac{1}{n} A^n$ is

- a) $\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- c) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
- d) None of these

7. The system of equations 2x + y - 5 = 0, x - 2y + 1 = 0, 2x - 14y - a = 0, is consistent. Then, a = 0is equal to

a) 1

b)2

c) 5

d) None of these

8. The system of equation

$$ax + y + z = \alpha - 1$$

$$x + \alpha y + z = \alpha - 1$$

$$x + y + \alpha z = \alpha - 1$$

Has no solution, if α is

a) 1

- b) Not-2
- c) Either-2 or 1
- d)-2

- 9. A matrix $A = |a_{ij}|$ is an upper triangular matrix, if
 - a) It is a square matrix and $a_{ij} = 0, i < j$
 - b) It is a square matrix and $a_{ij} = 0, i > j$
 - c) It is not a square matrix and $a_{ij} = 0, i > j$
 - d) It is not a square matrix and $a_{ij} = 0$, i < j
- 10. If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and A^2 is the identity matrix, then x is equal to
 - a) -1

b)0

c) 1

d)2

- 11. $A = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ and $A^{-1} = \lambda$ (adj A), then λ equal to
 - a) $-\frac{1}{6}$
- b) $\frac{1}{2}$

- $d)^{\frac{1}{6}}$
- 12. If $A = [a_{ij}]$ is a 4×4 matrix and C_{ij} is the cofactor of the element a_{ij} in |A|, then the expression $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$ is equal to
 - a) 0

b) -1

c) 1

- d)|A|
- 13. For what value of λ , the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = 10$ is consistent?
 - a) 1

b) 2

c) -1

d)3

- 14. If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to
 - a) $2^{100}A$
- b) $2^{99}A$
- c) 100 A
- d) 299 A

- 15. Inverse of the matrix $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ is

 a) $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ b) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$

- c) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ d) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$
- 16. Which of the following is correct?
 - a) Determinant is square matrix
 - b) Determinant is a number associated to a matrix
 - c) Determinant is a number associated to a square matrix
 - d) None of these
- 17. If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then B equals
 - a) $I\cos\theta + I\sin\theta$
- b) $I\sin\theta + I\cos\theta$ c) $I\cos\theta I\sin\theta$
- d) $-I\cos\theta + I\sin\theta$

- 18. What must be the matrix *X* if $2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$?

 - a) $\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix}$
- d) $\begin{bmatrix} 2 6 \\ 4 2 \end{bmatrix}$

- 19. AandB be 3×3 matrices. Then, AB = 0 implies
 - a) A = O and B = O
 - b) |A| = 0 and |B| = 0
 - c) Either |A| = 0 or |B| = 0
 - d)A = OorB = O
- 20. Let $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $D = \begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$, if $X = A^{-1}D$, then X is equal to

- b) $\begin{bmatrix} \frac{8}{3} \\ \frac{1}{3} \\ 0 \end{bmatrix}$ c) $\begin{bmatrix} -\frac{8}{3} \\ 1 \\ 0 \end{bmatrix}$