CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :-MATRICES

1. If $P=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$, then $P Q$ is equal to
a) $\left[\begin{array}{cc}-2 & 2 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
b) $\left[\begin{array}{cc}2 & -2 \\ -1 & 1 \\ -1 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
2. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$ and $B=(\operatorname{adj} A)$, and $C=5 A$, then $\frac{|\operatorname{adj} B|}{|C|}$ is equal to
a) 5
b) 25
c) -1
d) 1
3. For $0<\theta<\pi$, if $A=\left[\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \cos \theta\end{array}\right]$, then
a) $A^{T}=A$
b) $A^{T}=-A$
c) $A^{2}=I$
d) $A^{T}=A^{-1}$
4. The values of a for which the system of equations
$x+y+z=0, x+a y+a z=0, x-a y+z=0$, possesses non-zero solutions, are given by
a) 1,2
b) $1,-1$
c) 1,0
d) None of these
5. If $x\left[\begin{array}{c}-3 \\ 4\end{array}\right]+y\left[\begin{array}{l}4 \\ 3\end{array}\right]=\left[\begin{array}{c}10 \\ -5\end{array}\right]$, then
a) $x=-2, y=1$
b) $x=-9, y=10$
c) $x=22, y=1$
d) $x=2, y=-1$
6. If A is a square matrix such that $A A^{T}=I=A^{T} A$, then A is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A diagonal matrix
d) An orthogonal matrix
7. The inverse of the matrix $\left[\begin{array}{rr}5 & -2 \\ 3 & 1\end{array}\right]$ is
a) $\frac{1}{11}\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
b) $\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
c) $\frac{1}{13}\left[\begin{array}{cc}-2 & 5 \\ 1 & 3\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$
8. If $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, then $A^{5}=$
a) 5 A
b) 10 A
c) $16 A$
d) 32 A
9. If $A(\theta)=\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]$ and $A B=I$, then $\left(\sec ^{2} \theta\right) B$ is equal to
a) $A(\theta)$
b) $A\left(\frac{\theta}{2}\right)$
c) $A(-\theta)$
d) $A\left(-\frac{\theta}{2}\right)$
10. If $A=\left[a_{i j}\right]$ is a skew-symmetric matrix of order n, then $a_{i i}=$
a) 0 for some i
b) 0 for all $i=1,2, \ldots, n$
c) 1 for some i
d) 1 for all $i=1,2, \ldots, n$
11. Let $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$, then A^{n} is equal to
a) $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a\end{array}\right]$
b) $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$
c) $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a^{n}\end{array}\right]$
d) $\left[\begin{array}{ccc}n a & 0 & 0 \\ 0 & n a & 0 \\ 0 & 0 & n a\end{array}\right]$
12. If A, B are symmetric matrices of the same order then $A B-B A$ is
a) Symmetric matrix
b) Skew-symmetric matrix
c) Null matrix
d) Unit matrix
13. If A is any $m \times n$ matrix such that $A B$ and $B A$ are both defined., then B is an
a) $m \times n$ matrix
b) $n \times m$ matrix
c) $n \times n$ matrix
d) $m \times m$ matrix
14. If A is a square matrix of order $n \times n$ and k is a scalar, then $\operatorname{adj}(k A)$ is equal to
a) $k \operatorname{adj} A$
b) $k^{n} \operatorname{adj} A$
c) $k^{n-1} \operatorname{adj} A$
d) k^{n+1} adj A
15. $x+k y-z=0,3 x-k y-z=0$ and $x-3 y+z=0$ has non-zero solution for k is equal to
a) -1
b) 0
c) 1
d) 2
16. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, Iis the unit matrix of order 2 and a, b are arbitrary constants, then $(a I+b A)^{2}$ is equal to
a) $a^{2} I-a b A$
b) $a^{2} I+2 a b A$
c) $a^{2} I+b^{2} A$
d) None of the above
17. If A is an orthogonal matrix, then
a) $|A|=0$
b) $|A|= \pm 1$
c) $|A|= \pm 2$
d) None of these
18. Given $2 x-y+2 z=2, x-2 y+2 z=-4, x+y+\lambda z=4$ then the value of λ such that the given system of equations has no solution, is
a) 3
b) 1
c) 0
d) -3
19. If $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x\end{array}\right]$ is an idempotent matrix, then x is equal to
a) -5
b) -1
c) -3
d) -4
20. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right]$ and adj $A=\left[\begin{array}{ccc}6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1\end{array}\right]$, then $x+y=$
a) 6
b) -1
c) 3
d) 1

