

CLASS: XIIth

DATE:

SUBJECT: MATHS

DPP NO.: 10

1. If
$$P = \begin{bmatrix} i & 0 & -i \\ 0 & -i & i \\ -i & i & 0 \end{bmatrix}$$
 and $Q = \begin{bmatrix} -i & i \\ 0 & 0 \\ i & -i \end{bmatrix}$, then PQ is equal to

a)
$$\begin{bmatrix} -2 & 2 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$$

a)
$$\begin{bmatrix} -2 & 2 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & -2 \\ -1 & 1 \\ -1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

c)
$$\begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $B = (adj A)$, and $C = 5A$, then $\frac{|adj B|}{|C|}$ is equal to

a) 5

b) 25

d)1

3. For
$$0 < \theta < \pi$$
, if $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then

a)
$$A^T = A$$

b)
$$A^T = -A$$

c)
$$A^2 = I$$

$$d)A^T = A^{-1}$$

4. The values of
$$a$$
 for which the system of equations

$$x + y + z = 0$$
, $x + ay + az = 0$, $x - ay + z = 0$, possesses non-zero solutions, are given by

a) 1, 2

- b) 1.-1
- c) 1, 0

d) None of these

5. If
$$x \begin{bmatrix} -3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$$
, then

a)
$$x = -2$$
, $y = 1$

a)
$$x = -2$$
, $y = 1$ b) $x = -9$, $y = 10$ c) $x = 22$, $y = 1$ d) $x = 2$, $y = -1$

c)
$$x = 22$$
, $y = 1$

d)
$$x = 2$$
, $y = -1$

6. If *A* is a square matrix such that
$$AA^T = I = A^TA$$
, then *A* is

- a) A symmetric matrix
- b) A skew-symmetric matrix
- c) A diagonal matrix
- d) An orthogonal matrix

7. The inverse of the matrix
$$\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$$
 is

a)
$$\frac{1}{11}\begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$ c) $\frac{1}{13}\begin{bmatrix} -2 & 5 \\ 1 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$

b)
$$\begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$$

c)
$$\frac{1}{13}\begin{bmatrix} -2 & 5\\ 1 & 3 \end{bmatrix}$$

$$d$$
) $\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$

- 8. If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then $A^5 =$
 - a) 5A

- b) 10A
- c) 16A
- d)32A
- 9. If $A(\theta) = \begin{bmatrix} 1 & \tan \theta \\ -\tan \theta & 1 \end{bmatrix}$ and AB = I, then $(\sec^2 \theta)B$ is equal to
 - a) $A(\theta)$
- b) $A\left(\frac{\theta}{2}\right)$
- d) $A\left(-\frac{\theta}{2}\right)$
- 10. If $A = [a_{ij}]$ is a skew-symmetric matrix of order n, then $a_{ii} =$
 - a) 0 for some i
- b) 0 for all i = 1, 2, ..., n c) 1 for some i
- d) 1 for all i = 1, 2, ..., n

- 11. Let $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then A^n is equal to

- a) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a \end{bmatrix}$ b) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ c) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n \end{bmatrix}$ d) $\begin{bmatrix} na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na \end{bmatrix}$
- 12. If A_iB are symmetric matrices of the same order then AB BA is
 - a) Symmetric matrix
 - b) Skew-symmetric matrix
 - c) Null matrix
 - d) Unit matrix
- 13. If A is any $m \times n$ matrix such that AB and BA are both defined, then B is an
 - a) $m \times n$ matrix
- b) $n \times m$ matrix
- c) $n \times n$ matrix
- d) $m \times m$ matrix
- 14. If A is a square matrix of order $n \times n$ and k is a scalar, then adj (kA) is equal to
 - a) k adj A
- b) k^n adi A
- c) k^{n-1} adi A
- d) k^{n+1} adj A
- 15. x + ky z = 0, 3x ky z = 0 and x 3y + z = 0 has non-zero solution for k is equal to

- 16. If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, I is the unit matrix of order 2 and a, b are arbitrary constants, then $(aI + bA)^2$ is equal to
 - a) $a^2I abA$
- b) $a^2I + 2abA$
- c) $a^2I + b^2A$
- d) None of the above

- 17. If *A* is an orthogonal matrix, then
 - a) |A| = 0
- b) $|A| = \pm 1$
- c) $|A| = \pm 2$
- d) None of these
- 18. Given 2x y + 2z = 2, x 2y + 2z = -4, $x + y + \lambda z = 4$ then the value of λ such that the given system of equations has no solution, is
 - a) 3

b) 1

c) 0

d)-3

- 19. If $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{bmatrix}$ is an idempotent matrix, then x is equal to

- d) -4
- a) -5 b) -1 c) -320. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ and adj $A = \begin{bmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{bmatrix}$, then x + y = -1
 - a) 6

d)1