

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 1

Topic :-MATRICES

- 1. If $A = [a_{ij}]_{m \times n}$ is a matrix of rank r and B is a square submatrix of order r + 1, then
 - a) *B* is invertible
 - b) *B* is not invertible
 - c) Bmay or may not be invertible
 - d) None of these
- 2. If *A* is square matrix, *A*', is its transpose, then $\frac{1}{2}(A A')$ is
 - a) A symmetric matrix
 - c) A unit matrix

- b) A skew-symmetric matrix d) An elementary matrix
- 3. Inverse of the matrix $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ is a) $\frac{1}{10} \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ b) $\frac{1}{10} \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$
- 4. Let *A* be a matrix of rank *r*. Then, a) rank $(A^T) = r$ b) rank $(A^T) < r$
- c) rank $(A^T) > r$

c) $\begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$

d) None of these

d) $\frac{1}{10}\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$

- 5. The adjoint matrix of $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ is
 - a) $\begin{bmatrix} 4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$ c) $\begin{bmatrix} 11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3 \end{bmatrix}$
- 6. If a matrix *A* is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} is equal to a) $-(3A^2 + 2A + 5)$ b) $3A^2 + 2A + 5$ c) $3A^2 - 2A - 5$ d) None of these
- 7. Let $A = [a_{ij}]_{n \times n}$ be a square matrix, and let c_{ij} be cofactor of a_{ij} in A.If $C = [c_{ij}]$, then a) |C| = |A| b) $|C| = |A|^{n-1}$ c) $|C| = |A|^{n-2}$ d) None of these
- 8. The system of equations x + y + z = 0, 2x + 3y + z = 0 and x = 2y = 0 has
 a) A unique solution; x = 0, y = 0, z = 0
 b) Infinite solutions
 c) No solutions
 d) Finite number of non-zero solutions

9. If $2X - \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ a) $\begin{bmatrix} 2 & 2 \\ 7 & 4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -2 \end{bmatrix}$, then X is equal to b) $\begin{bmatrix} 1 & 2 \\ \frac{7}{2} & 2 \end{bmatrix}$	c) $\begin{bmatrix} 2 & 2 \\ \frac{7}{2} & 1 \end{bmatrix}$	d)None of these
10. Let $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, then the values of x and y are a) $x = -\frac{1}{11}, y = \frac{2}{11}$ b) $x = -\frac{1}{11}, y = -\frac{2}{11}$ c) $x = \frac{1}{11}, y = \frac{2}{11}$ d) $x = \frac{1}{11}, y = -\frac{2}{11}$			
11. Let A and B be two symmetric matrices of sama) A symmetric matrixc) A null matrix		e order. Then, the matrix <i>AB — BA</i> is b) A skew-symmetric matrix d) The identity matrix	
12. If $A = \begin{bmatrix} 1 & x \\ x^2 & 4y \end{bmatrix} a$, $B = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$ and adj $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the values of x and y are respectively			
a) (1, 1)	b)(-1,1)	c) (1, 0)	d)None of these
13. Let <i>p</i> is a non-singular matrix such that $1 + p + p^2 + + p^n = 0$ (<i>O</i> denotes the null matrix), then p^{-1} is			
a) p^n	b) $-p^n$	c) $-(1 + p + + p^n)$	d)None of these
14. If $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 5 & 10 \\ -5 & -2 \\ 10 & -4 \end{bmatrix}$ a) 3	$\begin{bmatrix} -5\\13\\6\end{bmatrix}\begin{bmatrix}5\\5\end{bmatrix}$, then the value of b) 0	of $x + y + z$ is c) 2	d)1
-			u) i
15. The matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is the matrix reflection in the line			
a) $x = 1$	b) $x + y = 1$	c) $y = 1$	d) x = y
16. If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then			
a) $a = 1, b = 1$		b) $a = \sin 2\theta$, $b = \cos 2\theta$	
c) $a = \cos 2\theta$, $b = \sin 2\theta$		d) None of the above	
17. If $A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$, then adj <i>A</i> is equal to			
a) <i>A</i>	b) <i>A</i> ′	c) 3 <i>A</i>	d) 3 <i>A</i> ′
18. Let the homogeneous system of linear equations $px + y + z = 0$, $x + qy + z = 0$, and			
x + y + rz = 0, where p,q	r, <i>r</i> ≠ 1, have a non-zero s b)0		of $\frac{1}{1-p} + \frac{1}{1-q} + \frac{1}{1-r}$ is d) 1
a) -1	0,0	c) 2	uji

19. If
$$A = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$$
 and $AB = I$, then *B* is equal to
a) $\cos^2 \frac{\theta}{2} \cdot A$ b) $\cos^2 \frac{\theta}{2} \cdot A^T$ c) $\cos^2 \theta \cdot I$ d) $\sin^2 \frac{\theta}{2} \cdot A$

20. The values of *x*, *y*, *z* in order, if the system of equations 3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4 has unique solution, are

