CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 9

Topic :-DIFFERENTIAL EQUATIONS

1. A function $y=f(x)$ has a second order derivative $f^{\prime \prime}=6(x-1)$. If its graph passes through the point $(2,1)$ and at point the tangent to the graph is $y=3 x-5$ then the function is
a) $(x-1)^{2}$
b) $(x-1)^{3}$
c) $(x+1)^{3}$
d) $(x+1)^{2}$
2. The solution of $\log \left(\frac{d y}{d x}\right)=a x+b y$ is
a) $\frac{e^{b y}}{b}=\frac{e^{a x}}{a}+c$
b) $\frac{e^{-b y}}{-b}=\frac{e^{a x}}{a}+c$
c) $\frac{e^{-b y}}{a}=\frac{e^{a x}}{b}+c$
d) None of these
3. For solving $\frac{d y}{d x}=4 x+y+1$, suitable substitution is
a) $y=v x$
b) $y=4 x+v$
c) $y=4 x$
d) $y+4 x+1=v$
4. The differential equation $\frac{d y}{d x}=\frac{x\left(1+y^{2}\right)}{y\left(1+x^{2}\right)}$ represents a family of
a) Parabola
b) Hyperbola
c) Circle
d) Ellipse
5. The differential equation of the system of all circles of radius r in the $x y$-plane, is
a) $\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
b) $\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$
c) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
d) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$
6. The differential equation of the family of parabola with focus as the origin and the axis as x -axis, is
a) $y\left(\frac{d y}{d x}\right)^{2}+4 x \frac{d y}{d x}=4 y$
b) $-y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y$
c) $y\left(\frac{d y}{d x}\right)^{2}+y=2 x y \frac{d y}{d x}$
d) $y\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+y=0$
7. The equation of curve through point $(1,0)$ which satisfies the differential equation $\left(1+y^{2}\right) d x-x y d y=0$ is
a) $x^{2}+y^{2}=4$
b) $x^{2}-y^{2}=1$
c) $2 x^{2}+y^{2}=2$
d) None of these
8. The equation of the curve through the point $(3,2)$ and whose slope is $\frac{x^{2}}{y+1}$, is
a) $\frac{y^{2}}{2}+y=\frac{x^{3}}{3}+5$
b) $y+y^{2}-x^{3}-21$
c) $y^{2}+2 y=\frac{2 x^{3}}{3}-10$
d) $\frac{y^{2}}{2}+y=\frac{x^{3}}{3}-5$
9. The equation of the curve through the point $(1,0)$ and whose slope is $\frac{y-1}{x^{2}+x^{\prime}}$, is
a) $2 x+(y-1)(x+1)=0$
b) $2 x-(y-1)(x+1)=0$
c) $2 x+(y-1)(x-1)=0$
d) None of these
10. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$, then $y(1)$ is equal to
a) $-\frac{1}{2}$
b) $e+\frac{1}{2}$
c) $e-\frac{1}{2}$
d) $\frac{1}{2}$
11. The order of the differential equation of all tangent lines to the parabola $y=x^{2}$ is
a) 1
b) 2
c) 3
d) 4
12. The differential equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is
a) $2\left(x^{2}-y^{2}\right) y^{\prime}=x y$
b) $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
c) $\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
d) $\left(x^{2}+y^{2}\right) y^{\prime}=2 x y$
13. The solution of $\frac{d y}{d x}+1=\operatorname{cosec}(x+y)$ is
a) $\cos (x+y)+x=c$
b) $\cos (x+y=c$
c) $\sin (x+y)+x=c$
d) $\sin (x+y)+\sin (x+y)=c$
14. The solution of the differential equation $9 y \frac{d y}{d x}+4 x=0$ is
a) $\frac{y^{2}}{9}+\frac{x^{2}}{4}=c$
b) $\frac{y^{2}}{4}+\frac{x^{2}}{9}=c$
c) $\frac{y^{2}}{9}-\frac{x^{2}}{4}=c$
d) $y^{2}-\frac{x^{2}}{9}=c$
15. The differential equation of the rectangular hyperbola whose axes are the asymptotes of the hyperbola, is
a) $y \frac{d y}{d x}=x$
b) $x \frac{d y}{d x}=-y$
c) $x \frac{d y}{d x}=y$
d) $x d y+y d x=c$
16. A particular solution of $\log \left(\frac{d y}{d x}\right)=3 x+4 y, y(0)=0$ is
a) $e^{3 x}+3 e^{-4 y}=4$
b) $4 e^{3 x}-3 e^{-4 y}=3$
c) $3 e^{3 x}+4 e^{-4 y}=7$
d) $4 e^{3 x}+3 e^{-4 y}=7$
17. The differential equation $\frac{d^{2} y}{d x^{2}}=2$ represents
a) A parabola whose axis is parallel to x-axis
b) A parabola whose axis is parallel to y-axis
c) A circle
d) None of the above
18. If $x \frac{d y}{d x}=y(\log y-\log x+1)$, then the solution of the equation is
a) $\log \left(\frac{x}{y}\right)=c y$
b) $\log \left(\frac{y}{x}\right)=c x$
c) $x \log \left(\frac{y}{x}\right)=c y$
d) $y \log \left(\frac{x}{y}\right)=c x$
19. The general solution of $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$ is
a) $\tan ^{-1}\left(\frac{y}{x}\right)=\log y+c$
b) $2 \tan ^{-1}\left(\frac{x}{y}\right)+\log x+c=0$
c) $\log \left(y+\sqrt{x^{2}+y^{2}}\right)+\log y+c=0$
d) $\sinh ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$
20. The equation of the curve satisfying the differential equation $y_{2}\left(x^{2}+1\right)=2 x y_{1}$ passing through the point $(0,1)$ and having slope of tangent at $x=0$ as 3 is
a) $y=x^{3}+3 x+1$
b) $y=x^{3}-3 x+1$
c) $y=x^{2}+3 x+1$
d) $y=x^{2}-3 x+1$

