

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 9

Topic :-differential equations

1. A function y = f(x) has a second order derivative f'' = 6(x - 1). If its graph passes through the point (2,1) and at point the tangent to the graph is y = 3x - 5 then the function is

- a) $(x-1)^2$ b) $(x-1)^3$ c) $(x+1)^3$ d) $(x+1)^2$
- 2. The solution of $\log\left(\frac{dy}{dx}\right) = ax + by$ is a) $\frac{e^{by}}{b} = \frac{e^{ax}}{a} + c$ b) $\frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + c$ c) $\frac{e^{-by}}{a} = \frac{e^{ax}}{b} + c$ d) None of these
- 3. For solving $\frac{dy}{dx} = 4x + y + 1$, suitable substitution is a) y = vx b) y = 4x + v c) y = 4x d) y + 4x + 1 = v
- 4. The differential equation $\frac{dy}{dx} = \frac{x(1+y^2)}{y(1+x^2)}$ represents a family of a) Parabola b) Hyperbola c) Circle d) Ellipse
- 5. The differential equation of the system of all circles of radius *r* in the *xy*-plane, is

a)
$$\left[1 + \left(\frac{dy}{dx}\right)^3\right]^2 = r^2 \left(\frac{d^2y}{dx^2}\right)^2$$

b) $\left[1 + \left(\frac{dy}{dx}\right)^3\right]^2 = r^2 \left(\frac{d^2y}{dx^2}\right)^3$
c) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = r^2 \left(\frac{d^2y}{dx^2}\right)^2$
d) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = r^2 \left(\frac{d^2y}{dx^2}\right)^3$

6. The differential equation of the family of parabola with focus as the origin and the axis as x-axis, is

a)
$$y\left(\frac{dy}{dx}\right)^2 + 4x\frac{dy}{dx} = 4y$$

b) $-y\left(\frac{dy}{dx}\right)^2 = 2x\frac{dy}{dx} - y$
c) $y\left(\frac{dy}{dx}\right)^2 + y = 2xy\frac{dy}{dx}$
d) $y\left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx} + y = 0$

7. The equation of curve through point (1,0) which satisfies the differential equation $(1 + y^2)dx - xy dy = 0$ is a) $x^2 + y^2 = 4$ b) $x^2 - y^2 = 1$ c) $2x^2 + y^2 = 2$ d) None of these

8. The equation of the curve through the point (3, 2) and whose slope is $\frac{x^2}{y+1}$, is

a)
$$\frac{y^2}{2} + y = \frac{x^3}{3} + 5$$
 b) $y + y^2 - x^3 - 21$ c) $y^2 + 2y = \frac{2x^3}{3} - 10$ d) $\frac{y^2}{2} + y = \frac{x^3}{3} - 5$

9. The equation of the curve through the point (1,0) and whose slope is $\frac{y-1}{x^2+x}$, is a) 2x + (y-1)(x+1) = 0b) 2x - (y-1)(x+1) = 0c) 2x + (y-1)(x-1) = 0d) None of these

10. If y(t) is a solution of $(1 + t)\frac{dy}{dt} - ty = 1$ and y(0) = -1, then y(1) is equal to a) $-\frac{1}{2}$ b) $e + \frac{1}{2}$ c) $e - \frac{1}{2}$ d) $\frac{1}{2}$

11. The order of the differential equation of all tangent lines to the parabola $y = x^2$ is a) 1 b) 2 c) 3 d) 4

12. The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where *a* is an arbitrary constant, is

a)
$$2(x^2 - y^2)y' = xy$$
 b) $2(x^2 + y^2)y' = xy$ c) $(x^2 - y^2)y' = 2xy$ d) $(x^2 + y^2)y' = 2xy$

13. The solution of $\frac{dy}{dx} + 1 = \operatorname{cosec} (x + y)$ is a) $\cos(x + y) + x = c$ b) $\cos(x + y) + x = c$ d) $\sin(x + y) + x = c$

b) $\cos(x + y = c)$ d) $\sin(x + y) + \sin(x + y) = c$

14. The solution of the differential equation $9y \frac{dy}{dx} + 4x = 0$ is

a)
$$\frac{y^2}{9} + \frac{x^2}{4} = c$$
 b) $\frac{y^2}{4} + \frac{x^2}{9} = c$ c) $\frac{y^2}{9} - \frac{x^2}{4} = c$ d) $y^2 - \frac{x^2}{9} = c$

15. The differential equation of the rectangular hyperbola whose axes are the asymptotes of the hyperbola, is

a)
$$y\frac{dy}{dx} = x$$
 b) $x\frac{dy}{dx} = -y$ c) $x\frac{dy}{dx} = y$ d) $x \, dy + y \, dx = c$

16. A particular solution of $\log \left(\frac{dy}{dx}\right) = 3x + 4y$, y(0) = 0 is a) $e^{3x} + 3e^{-4y} = 4$ b) $4e^{3x} - 3e^{-4y} = 3$ c) $3e^{3x} + 4e^{-4y} = 7$ d) $4e^{3x} + 3e^{-4y} = 7$

17. The differential equation $\frac{d^2y}{dx^2} = 2$ represents a) A parabola whose axis is parallel to *x*-axis c) A circle

b) A parabola whose axis is parallel to *y*-axisd) None of the above

18. If
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$
, then the solution of the equation is
a) $\log\left(\frac{x}{y}\right) = cy$ b) $\log\left(\frac{y}{x}\right) = cx$ c) $x\log\left(\frac{y}{x}\right) = cy$ d) $y\log\left(\frac{x}{y}\right) = cx$

19. The general solution of $y^2dx + (x^2 - xy + y^2)dy = 0$ is

a)
$$\tan^{-1}\left(\frac{y}{x}\right) = \log y + c$$

b) $2\tan^{-1}\left(\frac{x}{y}\right) + \log x + c = 0$
c) $\log(y + \sqrt{x^2 + y^2}) + \log y + c = 0$
d) $\sinh^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$

20. The equation of the curve satisfying the differential equation $y_2(x^2 + 1) = 2xy_1$ passing through the point (0,1) and having slope of tangent at x = 0 as 3 is

a) $y = x^3 + 3x + 1$ b) $y = x^3 - 3x + 1$ c) $y = x^2 + 3x + 1$ d) $y = x^2 - 3x + 1$

