

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 8

Topic :-differential equations

1. The equation of the curve in which subnormal varies as the square of the ordinate is (λ is constant of proportionality)

a)
$$y = C e^{2\lambda x}$$
 b) $y = C e^{\lambda x}$ c) $\frac{y^2}{2} + \lambda x = C$ d) $y^2 + \lambda x^2 = C$

- 2. The general solution of the differential equation $\frac{dy}{dx} + \frac{1 + \cos 2y}{1 \cos 2x} = 0$ is given by a) $\tan y + \cot x = c$ b) $\tan y - \cot x = c$ c) $\tan x - \cot y = c$ d) $\tan x + \cot y = c$
- 3. The solution of the differential equation $\left(e^{-2\sqrt{x}} \frac{y}{\sqrt{x}}\right)\frac{dy}{dx} = 1$ is given by a) $ye^{2\sqrt{x}} = x + c$ b) $ye^{-2\sqrt{x}} = \sqrt{x} + c$ c) $y = \sqrt{x}$ d) $y = 3\sqrt{x}$

4. The solution of the differential equation $e^{-x}(y+1)dy + (\cos^2 x - \sin 2x)y dx = 0$ subjected to the condition that y = 1 when x = 0 is

a) $y + \log y + e^x \cos^2 x = 2$ b) $\log(y + 1) + e^x \cos^2 x = 1$ c) $y + \log y = e^x \cos^2 x$ d) $(y + 1) + e^x \cos^2 x = 2$

5. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$, is a) $(4x + y + 1) = \tan(2x + c)$ b) $(4x + y + 1)^2 = 2\tan(2x + c)$ c) $(4x + y + 1)^3 = 3\tan(2x + c)$ d) $(4x + y + 1) = 2\tan(2x + c)$

6. An integrating factor of the differential equation $x + \frac{dy}{dx} + y \log x = x e^{x} x^{-\frac{1}{2}\log x}, (x, 0) \text{ is}$ a) $x^{\log x}$ b) $(\sqrt{x})^{\log x}$ c) $(\sqrt{e})^{(\log x)^{2}}$ d) $e^{x^{2}}$

7. The order of differential equation of all parabola with it's axis parallel to *y*-axis and touch *x*-axis is

a) 2 b) 3 c) 1 d) None of these

8. The differential equation obtained on eliminating *A* and *B* from the equation $y = A \cos \omega t + B \sin \omega t$ is

a)
$$y_2 = -\omega^2 y$$
 b) $y_1 + y = 0$ c) $y_2 + y_1 = 0$ d) $y_1 - \omega^2 y = 0$

9. The solution of the differential equation
$$\frac{dy}{dx} \tan y = \sin(x + y) + \sin(x - y)$$
 is
a) $\sec y + 2\cos x = c$ b) $\sec y - 2\cos x = c$ c) $\cos y - 2\sin x = c$ d) $\tan y - 2\sec y = c$
10. The degree of the differential equation satisfying the relation $\sqrt{1 + x^2} + \sqrt{1 + y^2} = \lambda$
 $(x\sqrt{1 + y^2} - y\sqrt{1 + x^2})$, is
a) 1 b) 2 c) 3 d) None of these
11. The solution of the differential equation $\frac{dy}{dx} - y\tan x = e^x \sec x$ is
a) $y = e^x \cos x + c$ b) $y\cos x = e^x + c$ c) $y = e^x \sin x + c$ d) $y\sin x = e^x + c$
12. The degree of the differential equations $x = 1 + (\frac{dy}{dx}) + \frac{1}{2!}(\frac{dy}{dx})^2 + \frac{1}{3!}(\frac{dy}{dx})^3 + ...$
a) 3 b) 2 c) 1 d) Not defined
13. If $y = y(x)$ and $\frac{2 + \sin x}{y + 1}(\frac{dy}{dx}) = -\cos x$, $y(0) = 1$, then $y(\frac{\pi}{2})$ equals
a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) $-\frac{1}{3}$ d) 1
14. The solution of $\cos y\frac{dy}{dx} = e^{x + \sin y} + x^2 e^{\sin y}$ is
a) $e^x - e^{\sin y} + \frac{x^3}{3} = c$
c) $e^x + e^{-\sin y} + \frac{x^3}{3} = c$
15. The solution of $y \, dx - x \, dy + 3x^2y^2e^{x^3}dx = 0$ is
a) $\frac{x}{y} + e^{x^3} = C$ b) $\frac{x}{y} - e^{x^3} = 0$ c) $-\frac{x}{y} + e^{x^3} = C$ d) None of these
16. The general solution of $\frac{dy}{dx} = \frac{2x - y}{x + 2y + 2} = c$ d) $x^2 + xy^2 = c$
17. $y + x^2 = \frac{dy}{dx}$ has the solution
a) $y + x^2 + 2x + 2 = ce^x$ b) $y^2 - xy - y^2 = c$ c) $x^2 + xy - y^2 = c$ d) $x^2 + xy^2 = c$
17. $y + x^2 = \frac{dy}{dx}$ has the solution
a) $y + x^2 + 2x + 2 = ce^x$ d) $y^2 + x + x^2 + 2 = ce^{2x}$
c) $y + x + 2x^2 + 2 = ce^x$
18. The equation of curve passing through the point $(1, \frac{\pi}{4})$ and having slope of tangent at
any point (x,y) as $\frac{y}{x} - \cos^2(\frac{y}{y})$, is

a) $x = e^{1 + \tan(\frac{y}{x})}$ b) $x = e^{1 - \tan(\frac{y}{x})}$ c) $x = e^{1 + \tan(\frac{x}{y})}$ d) $x = e^{1 - \tan(\frac{x}{y})}$

19. The solution of
$$\frac{dy}{dx} = 1 + y + y^2 + x + xy + xy^2$$
 is
a) $\tan^{-1}\left(\frac{2y+1}{\sqrt{3}}\right) = x + x^2 + c$ b) $4\tan^{-1}\left(\frac{4y+1}{\sqrt{3}}\right) = \sqrt{3}(2x + x^2) + c$
c) $\sqrt{3}\tan^{-1}\left(\frac{3y+1}{3}\right) = 4(1 + x + x^2) + c$ d) $4\tan^{-1}\left(\frac{2y+1}{\sqrt{3}}\right) = \sqrt{3}(2x + x^2) + c$

20. The solution of
$$\frac{dy}{dx} = 2^{y-x}$$
 is
a) $2^x + 2^y = c$ b) $2^x - 2^y = c$ c) $\frac{1}{2^x} - \frac{1}{2^y} = c$ d) $\frac{1}{2^x} + \frac{1}{2^y} = c$