CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :-DIFFERENTIAL EQUATIONS

1. The equation of the curve in which subnormal varies as the square of the ordinate is (λ is constant of proportionality)
a) $y=C e^{2 \lambda x}$
b) $y=C e^{\lambda x}$
c) $\frac{y^{2}}{2}+\lambda x=C$
d) $y^{2}+\lambda x^{2}=C$
2. The general solution of the differential equation $\frac{d y}{d x}+\frac{1+\cos 2 y}{1-\cos 2 x}=0$ is given by
a) $\tan y+\cot x=c$
b) $\tan y-\cot x=c$
c) $\tan x-\cot y=c$
d) $\tan x+\cot y=c$
3. The solution of the differential equation $\left(e^{-2 \sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d y}{d x}=1$ is given by
a) $y e^{2 \sqrt{x}}=x+c$
b) $y e^{-2 \sqrt{x}}=\sqrt{x}+c$
c) $y=\sqrt{x}$
d) $y=3 \sqrt{x}$
4. The solution of the differential equation $e^{-x}(y+1) d y+\left(\cos ^{2} x-\sin 2 x\right) y d x=0$ subjected to the condition that $y=1$ when $x=0$ is
a) $y+\log y+e^{x} \cos ^{2} x=2$
b) $\log (y+1)+e^{x} \cos ^{2} x=1$
c) $y+\log y=e^{x} \cos ^{2} x$
d) $(y+1)+e^{x} \cos ^{2} x=2$
5. The solution of the differential equation $\frac{d y}{d x}=(4 x+y+1)^{2}$, is
a) $(4 x+y+1)=\tan (2 x+c)$
b) $(4 x+y+1)^{2}=2 \tan (2 x+c)$
c) $(4 x+y+1)^{3}=3 \tan (2 x+c)$
d) $(4 x+y+1)=2 \tan (2 x+c)$
6. An integrating factor of the differential equation
$x+\frac{d y}{d x}+y \log x=x e^{x} x^{-\frac{1}{2} \log x},(x, 0)$ is
a) $x^{\log x}$
b) $(\sqrt{x})^{\log x}$
c) $(\sqrt{e})^{(\log x)^{2}}$
d) $e^{x^{2}}$
7. The order of differential equation of all parabola with it's axis parallel to y-axis and touch x axis is
a) 2
b) 3
c) 1
d) None of these
8. The differential equation obtained on eliminating A and B from the equation $y=A$ $\cos \omega t+B \sin \omega t$ is
a) $y_{2}=-\omega^{2} y$
b) $y_{1}+y=0$
c) $y_{2}+y_{1}=0$
d) $y_{1}-\omega^{2} y=0$
9. The solution of the differential equation $\frac{d y}{d x} \tan y=\sin (x+y)+\sin (x-y)$ is
a) $\sec y+2 \cos x=c$
b) $\sec y-2 \cos x=c$
c) $\cos y-2 \sin x=c$
d) $\tan y-2 \sec y=c$
10. The degree of the differential equation satisfying the relation $\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=\lambda$ $\left(x \sqrt{1+y^{2}}-y \sqrt{1+x^{2}}\right)$, is
a) 1
b) 2
c) 3
d) None of these
11. The solution of the differential equation $\frac{d y}{d x}-y \tan x=e^{x} \sec x$ is
a) $y=e^{x} \cos x+c$
b) $y \cos x=e^{x}+c$
c) $y=e^{x} \sin x+c$
d) $y \sin x=e^{x}+c$
12. The degree of the differential equations $x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\ldots$
a) 3
b) 2
c) 1
d) Not defined
13. If $y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)$ equals
a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) $-\frac{1}{3}$
d) 1
14. The solution of $\cos y \frac{d y}{d x}=e^{x+\sin y}+x^{2} e^{\sin y}$ is
a) $e^{x}-e^{\sin y}+\frac{x^{3}}{3}=c$
b) $e^{-x}-e^{-\sin y}+\frac{x^{3}}{3}=c$
c) $e^{x}+e^{-\sin y}+\frac{x^{3}}{3}=c$
d) $e^{x}-e^{\sin y}-\frac{x^{3}}{3}=c$
15. The solution of $y d x-x d y+3 x^{2} y^{2} e^{x^{3}} d x=0$ is
a) $\frac{x}{y}+e^{x^{3}}=C$
b) $\frac{x}{y}-e^{x^{3}}=0$
c) $-\frac{x}{y}+e^{x^{3}}=C$
d) None of these
16. The general solution of $\frac{d y}{d x}=\frac{2 x-y}{x+2 y}$ is
a) $x^{2}-x y+y^{2}=c$
b) $x^{2}-x y-y^{2}=c$
c) $x^{2}+x y-y^{2}=c$
d) $x^{2}+x y^{2}=c$
17. $y+x^{2}=\frac{d y}{d x}$ has the solution
a) $y+x^{2}+2 x+2=c e^{x}$
b) $y+x+x^{2}+2=c e^{2 x}$
c) $y+x+2 x^{2}+2=c e^{x}$
d) $y^{2}+x+x^{2}+2=c e^{x}$
18. The equation of curve passing through the point $\left(1, \frac{\pi}{4}\right)$ and having slope of tangent at any point (x, y) as $\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$, is
a) $x=e^{1+\tan \left(\frac{y}{x}\right)}$
b) $x=e^{1-\tan \left(\frac{y}{x}\right)}$
c) $x=e^{1+\tan \left(\frac{x}{y}\right)}$
d) $x=e^{1-\tan \left(\frac{x}{y}\right)}$
19. The solution of $\frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2}$ is
a) $\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+c$
b) $4 \tan ^{-1}\left(\frac{4 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+c$
c) $\sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+c$
d) $4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+c$
20. The solution of $\frac{d y}{d x}=2^{y-x}$ is
a) $2^{x}+2^{y}=c$
b) $2^{x}-2^{y}=c$
c) $\frac{1}{2^{x}}-\frac{1}{2^{y}}=c$
d) $\frac{1}{2^{x}}+\frac{1}{2^{y}}=c$
