

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 7

4

Topic :-differential equations

1.	The function $f(\theta) = \frac{d}{d\theta} \int_0^{\theta} \frac{dx}{1 - \cos \theta \cos x}$ satisfies the differential equation			
		a) $\frac{df}{d\theta} + 2f(\theta) = 0$	b) $\frac{df}{d\theta} - 2f(\theta) = 0$	c) $\frac{df}{d\theta} - 2f(\theta) = \tan \theta$
	d) $\frac{df}{d\theta}$ +2 $f(\theta)\cot\theta = 0$			
2.	The solution of $\frac{dy}{dx} = \left(\frac{y}{x}\right)$	$(-)^{1/3}$, is		
	a) $x^{2/3} + y^{2/3} = C$	b) $x^{1/3} + y^{1/3} = C$	c) $y^{2/3} - x^{2/3} = C$	d) $y^{1/3} - x^{1/3} = C$
3.	If $x\sin\left(\frac{y}{x}\right)dy = \left[y\sin\left(\frac{y}{x}\right) - y\right]dx$ and $y(1) = \frac{\pi}{2}$, then the value of $\cos\left(\frac{y}{x}\right)$ is equal to			
	a) <i>x</i>	b) $\frac{1}{x}$	c) log x	d) <i>e^x</i>
Λ	The colution of the d	lifterential equation $\frac{d}{d}$	$\frac{y}{x} = \frac{y}{x} + \frac{\Phi(\frac{y}{x})}{x}$ is	
4.	The solution of the u	$\frac{1}{d}$	$x - x + \frac{\phi'(\frac{y}{x})}{\phi'(\frac{y}{x})}$ is	$p + (\gamma) = h_{\alpha}$
	a) $x \phi(\frac{-}{x}) = k$	$b) \varphi(\frac{z}{x}) = kx$	c) $y \phi(\frac{-}{x}) = \kappa$	$d \Phi(\frac{z}{x}) = k y$
5.	If $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$, $y(1) = 1$, then one of the values of x_0 satisfying $y(x_0) = e$ is given by			
	a) $e\sqrt{2}$	b) $e\sqrt{3}$	c) <i>e</i> $\sqrt{5}$	d) $e/\sqrt{2}$
6.	Solution of $\frac{dy}{dx} = 3^{x+y}$	′ is		
	a) $3^{x+y} = c^{dx}$	b) $3^x + 3^y = c$	c) $3^{x-y} = c$	d) $3^x + 3^{-y} = c$
7.	Order of the differential equation of the family of all concentric circles centred at (h,k) is			
	a) 1	b)2	c) 3	d)4
8.	The solution of $\frac{dy}{dx} = \cos(x + y) + \sin(x + y)$ is			
	a) $\log \left[1 + \tan \left(\frac{x+y}{2}\right)\right] + c = 0$ b)			+ c = 0 b)
	$\log\left[1+\tan\left(\frac{x+y}{2}\right)\right] = x+c$			
	c) $\log\left[1 - \tan\left(\frac{x+y}{2}\right)\right]$	= x + c	d) None of these	
9.	The general solution of the differential equation $\frac{dy}{dx} = \frac{(1+y^2)}{xy(1+x^2)}$ is			

a)
$$(1 + x^2)(1 + y^2) = c$$

c) $(1 - x^2)(1 - y^2) = c$
b) $(1 + x^2)(1 + y^2) = cx^2$
d) $(1 + x^2)(1 + y^2) = cy^2$

10. The general solution of $\frac{dy}{dx} = \frac{2x - y}{x + 2y}$ is a) $x^2 - xy + y^2 = c$ b) $x^2 - xy - y^2 = c$ c) $x^2 + xy - y^2 = c$ d) $x^2 + xy^2 = c$

11. The differential equation representing the family of curves $y^2 = 2c(x + c^{2/3})$, where *c* is a positive parameter, is of

a) Order 3, degree 3 b) Order 2, degree 4 c) Order 1, degree 5 d) Order 5, degree 1

12. The solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is a) xy = c b) x + y = c c) $\log x \log y = c$ d) $x^2 + y^2 = c$

13. If
$$y = (x + \sqrt{1 + x})^n$$
, then $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx}$ is
a) n^2y b) $-n^2y$ c) $-y$ d) $2x^2y$

14. The order of the differential equation whose general solution is given by $y = (c_1 + c_2)$ $\cos(x + c_3) - c_4 e^{x+c_5}$ where c_1, c_2, c_3, c_4 and c_5 are arbitrary constants is a) 5 b) 6 c) 3 d) 2

15. The differential equation obtained by eliminating arbitrary constants from $y = ae^{bx}$ is a) $y\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ b) $y\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$ c) $y\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = 0$ d) $y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$

16. The differential equation of all non-horizontal lines in a plane is

a)
$$\frac{d^2y}{dx^2} = 0$$
 b) $\frac{dx}{dy} = 0$ c) $\frac{dy}{dx} = 0$ d) $\frac{d^2x}{dy^2} = 0$

17. The degree of the differential equation satisfying $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$ is a) 1 b) 2 c) 3 d) None of these

18. The solution of the differential equation $\frac{dy}{dx} = e^{y+x} + e^{y-x}$ is a) $e^{-y} = e^x - e^{-x} + c$ b) $e^{-y} = e^{-x} - e^x + c$ c) $e^{-y} = e^x + e^{-x} + c$ d) $e^{-y} + e^x + e^{-x} = c$

19. The integrating factor of the differential equation $\frac{dy}{dx} + \frac{1}{x}y = 3x$ is a) x b) ln x c) 0 d) ∞

20. The solution of the differential equation $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$ is a) $\tan y \tan x = c$ b) $\frac{\tan y}{\tan x} = c$ c) $\frac{\tan^2 x}{\tan y} = c$ d) None of these