CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic:-DIFFERENTIAL EQUATIONS

1. The function $f(\theta)=\frac{d}{d \theta} \int_{0}^{\theta} \frac{d x}{1-\cos \theta \cos x}$ satisfies the differential equation
a) $\frac{d f}{d \theta}+2 f(\theta)=0$
b) $\frac{d f}{d \theta}-2 f(\theta)=0$
c) $\frac{d f}{d \theta}-2 f(\theta)=\tan \theta$
d) $\frac{d f}{d \theta}+2 f(\theta) \cot \theta=0$
2. The solution of $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$, is
a) $x^{2 / 3}+y^{2 / 3}=C$
b) $x^{1 / 3}+y^{1 / 3}=C$
c) $y^{2 / 3}-x^{2 / 3}=C$
d) $y^{1 / 3}-x^{1 / 3}=C$
3. If $x \sin \left(\frac{y}{x}\right) d y=\left[y \sin \left(\frac{y}{x}\right)-y\right] d x$ and $y(1)=\frac{\pi}{2}$, then the value of $\cos \left(\frac{y}{x}\right)$ is equal to
a) x
b) $\frac{1}{x}$
c) $\log x$
d) e^{x}
4. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$ is
a) $x \phi\left(\frac{y}{x}\right)=k$
b) $\phi\left(\frac{y}{x}\right)=k x$
c) $y \phi\left(\frac{y}{x}\right)=k$
d) $\phi\left(\frac{y}{x}\right)=k y$
5. If $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}, y(1)=1$, then one of the values of x_{0} satisfying $y\left(x_{0}\right)=e$ is given by
a) $e \sqrt{2}$
b) $e \sqrt{3}$
c) $e \sqrt{5}$
d) $e / \sqrt{2}$
6. Solution of $\frac{d y}{d x}=3^{x+y}$ is
a) $3^{x+y}=c$
b) $3^{x}+3^{y}=c$
c) $3^{x-y}=c$
d) $3^{x}+3^{-y}=c$
7. Order of the differential equation of the family of all concentric circles centred at (h, k) is
a) 1
b) 2
c) 3
d) 4
8. The solution of $\frac{d y}{d x}=\cos (x+y)+\sin (x+y)$ is
a) $\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]+c=0$
b)
$\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+c$
d) None of these
9. The general solution of the differential equation $\frac{d y}{d x}=\frac{\left(1+y^{2}\right)}{x y\left(1+x^{2}\right)}$ is
a) $\left(1+x^{2}\right)\left(1+y^{2}\right)=c$
b) $\left(1+x^{2}\right)\left(1+y^{2}\right)=c x^{2}$
c) $\left(1-x^{2}\right)\left(1-y^{2}\right)=c$
d) $\left(1+x^{2}\right)\left(1+y^{2}\right)=c y^{2}$
10. The general solution of $\frac{d y}{d x}=\frac{2 x-y}{x+2 y}$ is
a) $x^{2}-x y+y^{2}=c$
b) $x^{2}-x y-y^{2}=c$
c) $x^{2}+x y-y^{2}=c$
d) $x^{2}+x y^{2}=c$
11. The differential equation representing the family of curves $y^{2}=2 c\left(x+c^{2 / 3}\right)$, where c is a positive parameter, is of
a) Order 3, degree 3
b) Order 2, degree 4
c) Order 1, degree 5
d) Order 5, degree 1
12. The solution of the differential equation $\frac{d x}{x}+\frac{d y}{y}=0$ is
a) $x y=c$
b) $x+y=c$
c) $\log x \log y=c$
d) $x^{2}+y^{2}=c$
13. If $y=(x+\sqrt{1+x})^{n}$, then $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$ is
a) $n^{2} y$
b) $-n^{2} y$
c) $-y$
d) $2 x^{2} y$
14. The order of the differential equation whose general solution is given by $y=\left(c_{1}+c_{2}\right)$ $\cos \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$ where $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} are arbitrary constants is
a) 5
b) 6
c) 3
d) 2
15. The differential equation obtained by eliminating arbitrary constants from $y=a e^{b x}$ is
a) $y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
b) $y \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$
c) $y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}=0$
d) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
16. The differential equation of all non-horizontal lines in a plane is
a) $\frac{d^{2} y}{d x^{2}}=0$
b) $\frac{d x}{d y}=0$
c) $\frac{d y}{d x}=0$
d) $\frac{d^{2} x}{d y^{2}}=0$
17. The degree of the differential equation satisfying $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ is
a) 1
b) 2
c) 3
d) None of these
18. The solution of the differential equation $\frac{d y}{d x}=e^{y+x}+e^{y-x}$ is
a) $e^{-y}=e^{x}-e^{-x}+c$
b) $e^{-y}=e^{-x}-e^{x}+c$
c) $e^{-y}=e^{x}+e^{-x}+c$
d) $e^{-y}+e^{x}+e^{-x}=c$
19. The integrating factor of the differential equation $\frac{d y}{d x}+\frac{1}{x} \cdot y=3 x$ is
a) x
b) $\ln x$
c) 0
d) ∞
20. The solution of the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$ is
a) $\tan y \tan x=c$
b) $\frac{\tan y}{\tan x}=c$
c) $\frac{\tan ^{2} x}{\tan y}=c$
d) None of these
