

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 6

1. The general solution
$$e^x \cos y \, dx - e^x \sin y \, dy = 0$$
, is

a)
$$e^x(\sin y + \cos y) = C$$
 b) $e^x\sin y = C$

c)
$$e^x = C\cos y$$

d)
$$e^x \cos y = C$$

2.
$$y = ae^{mx} + be^{-mx}$$
 satisfies which of the following differential equation?

$$a)\frac{dy}{dx} - my = 0$$

$$\mathbf{b})\frac{dy}{dx} + my = 0$$

c)
$$\frac{d^2y}{dx^2} + m^2y = 0$$

a)
$$\frac{dy}{dx} - my = 0$$
 b) $\frac{dy}{dx} + my = 0$ c) $\frac{d^2y}{dx^2} + m^2y = 0$ d) $\frac{d^2y}{dx^2} - m^2y = 0$

3. The solution of
$$\frac{dy}{dx} + y = e^{-x}$$
, $y(0) = 0$, is

a)
$$y = e^{-x}(x-1)$$
 b) $y = xe^{-x}$

b)
$$y = xe^{-x}$$

c)
$$y = xe^{-x} + 10$$

c)
$$y = xe^{-x} + 10$$
 d) $y = (x + 1)e^{-x}$

4. The general solution of the differential equation
$$(1 + y^2)dx + (1 + x^2)dy = 0$$
 is

a)
$$x - y = c(1 - xy)$$
 b) $x - y = c(1 + xy)$ c) $x + y = c(1 - xy)$ d) $x + y = c(1 + xy)$

$$c) x + y = c(1 - xy)$$

$$d)x + y = c(1 + xy)$$

5. If the integrating factor of the differential equation
$$\frac{dy}{dx} + P(x)y = Q(x)$$
 is x , then $P(x)$ is

b)
$$x^2/2$$

c)
$$1/x$$

d)
$$1/x^2$$

6. The order of the differential equation
$$\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
 is

7. The solution of
$$\frac{dy}{dx} + \sqrt{\left(\frac{1-y^2}{1-x^2}\right)} = 0$$
 is

a)
$$\tan^{-1} x + \cot^{-1} x = c$$

b)
$$\sin^{-1} x + \sin^{-1} y = c$$

c)
$$\sec^{-1} x + \csc^{-1} x = c$$

8. Solution of the differential equation
$$x dy - y dx = 0$$
 represents

- a) A parabola whose vertex is at the origin
- b) A circle whose centre is at the origin
- c) A rectangular hyperbola
- d) Straight lines passing through the origin

9. The differential equation of the family of circles passing through the fixed points (a,0)and (-a,0) is

a)
$$y_1(y^2 - x^2) + 2xy + a^2 = 0$$

b)
$$y_1y^2 + xy + a^2x^2 = 0$$

c)
$$y_1(y^2 - x^2 + a^2) + 2xy = 0$$

d)
$$y_1(y^2 + x^2) - 2xy + a^2 = 0$$

10. The solution of differential equation (x + y)(dx - dy) = dx + dy is

a)
$$x - y = ke^{x-y}$$

b)
$$x + y = ke^{x+y}$$

c)
$$x + y = ke^{x-y}$$

b)
$$x + y = ke^{x+y}$$
 c) $x + y = ke^{x-y}$ d) $(x - y) = ke^{x+y}$

11. The general solution of $y^2dx + (x^2 - xy + y^2)dy = 0$ is

a)
$$\tan^{-1}\left(\frac{x}{-}\right) + \log y + c = 0$$

b)
$$2\tan^{-1}\left(\frac{x}{y}\right) + \log x + c = 0$$

a)
$$\tan^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$$

b) $2\tan^{-1}\left(\frac{x}{y}\right) + \log x + c = 0$
c) $\log\left(y + \sqrt{x^2 + y^2}\right) + \log y + c = 0$
d) $\sin h^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$

$$d) \sin h^{-1} \left(\frac{x}{y}\right) + \log y + c = 0$$

12. The order and degree of the following differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/2} = \frac{d^3y}{dx^3}$ are respectively

- d)3.5
- The solution of $x \, ay y \, dx + x^2 e^x dx = 0$ is

 a) $\frac{y}{x} + e^x = c$ b) $\frac{x}{y} + e^x = c$ c) $x + e^y = c$ 13. The solution of $x dy - y dx + x^2 e^x dx = 0$ is

a)
$$\frac{y}{x} + e^x = 0$$

$$b)\frac{x}{y} + e^x = c$$

c)
$$x + e^y = c$$

$$d)y + e^x = c$$

14. The solution of the differential equation $\frac{dy}{dx} = \frac{x - y + 3}{2(x - y) + 5}$ is

a)
$$2(x - y) + \log(x - y) = x + c$$

b)
$$2(x - y) - \log(x - y + 2) = x + c$$

c)
$$2(x-y) + \log(x-y+2) = x + c$$

- d) None of the above
- 15. The differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants, is of
 - a) First order and second degree
- b) First order and first degree
- c) Second order and first degree
- d) Second order and second degree
- 16. If y = f(x) is the equation of the curve an its differential equation is given by $\frac{dy}{dx} = \frac{x+2}{y+3}$, then the equation of the curve, if it passes through (2, 2), is

a)
$$x^2 - y^2 + 4x - 6y + 4 = 0$$

b)
$$x^2 - y^2 + 4x + 6y = 0$$

c)
$$x^2 - y^2 - 4x - 6y = 0$$

d)
$$x^2 - y^2 - 4x - 6y - 4 = 0$$

17. The differential equation of the family of curves $y^2 = 4 a (x + a)$, is

a)
$$y^2 = 4\frac{dy}{dx}\left(x + \frac{dy}{dx}\right)$$

b)
$$y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} - y^2 = 0$$

c)
$$2y \frac{dy}{dx} = 4a$$

$$d) y^2 \frac{dy}{d} + 4y = 0$$

- 18. The integrating factor of the differential equation $x \log x \frac{dy}{dx} + y = 2 \log x$ is given by a) e^x b) $\log x$ c) $\log (\log x)$ d) x
- 19. The differential equation which represents the family of plane curves $y = \exp(cx)$ is a) y' = cy b) $xy' \log y = 0$ c) $x \log y = yy'$ d) $y \log y = xy'$
- 20. The solution of $\frac{dy}{dx}$ + ytan $x = \sec x$ is a) $y\sec x = \tan x + c$ b) $y\tan x = \sec x + c$ c) $\tan x = y\tan x + c$ d) $x\sec x = y\tan y + c$